A Geometric Approach towards Inverse Kinematics of Soft Extensible Pneumatic Actuators Intended for Trajectory Tracking.

Sensors (Basel)

Reshape Lab, Dynamics and Control Group, Department of Mechanical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Published: August 2023

Soft robots are interesting examples of hyper-redundancy in robotics. However, the nonlinear continuous dynamics of these robots and the use of hyper-elastic and visco-elastic materials make modeling these robots more complicated. This study presents a geometric inverse kinematics (IK) model for trajectory tracking of multi-segment extensible soft robots, where each segment of the soft actuator is geometrically approximated with a rigid links model to reduce the complexity. In this model, the links are connected with rotary and prismatic joints, which enable both the extension and rotation of the robot. Using optimization methods, the desired configuration variables of the soft actuator for the desired end-effector positions were obtained. Furthermore, the redundancy of the robot is applied for second task applications, such as tip angle control. The model's performance was investigated through kinematics and dynamics simulations and numerical benchmarks on multi-segment soft robots. The results showed lower computational costs and higher accuracy compared to most existing models. The method is easy to apply to multi-segment soft robots in both 2D and 3D, and it was experimentally validated on 3D-printed soft robotic manipulators. The results demonstrated the high accuracy in path following using this technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422376PMC
http://dx.doi.org/10.3390/s23156882DOI Listing

Publication Analysis

Top Keywords

soft robots
16
inverse kinematics
8
soft
8
trajectory tracking
8
soft actuator
8
multi-segment soft
8
robots
6
geometric approach
4
approach inverse
4
kinematics soft
4

Similar Publications

Structurally tailored and engineered macromolecular (STEM) networks are attractive materials for soft robotics, stretchable electronics, tissue engineering, and 3D printing due to their tunable properties. To date, STEM networks have been synthesized by atom transfer radical polymerization (ATRP) or the combination of reversible addition-fragmentation chain-transfer (RAFT) polymerization and ATRP. RAFT polymerization could have limited selectivity with ATRP inimer sites that can participate in radical-transfer processes.

View Article and Find Full Text PDF

An MRI-guided stereotactic neurosurgical robotic system for semi-enclosed head coils.

J Robot Surg

December 2024

National Engineering Research Center of Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, 100084, China.

Magnetic resonance imaging (MRI) offers high-quality soft tissue imaging without radiation exposure, which allows stereotactic techniques to significantly improve outcomes in cranial surgeries, particularly in deep brain stimulation (DBS) procedures. However, conventional stereotactic neurosurgeries often rely on mechanical stereotactic head frames and preoperative imaging, leading to suboptimal results due to the invisibility and the contact with patient's head, which may cause additional harm. This paper presents a frameless, MRI-guided stereotactic neurosurgical robotic system.

View Article and Find Full Text PDF

Research on the operational properties of the soft gripper pads.

Sci Rep

December 2024

Division of Mechatronic Devices, Institute of Mechanical Technology, Poznan University of Technology, 60-965, Poznan, Poland.

Grippers are commonly used as a technological tooling for manipulators. They enable robots to interact with objects in their work area. Grippers have a wide range of differentiation focused on the operation performed and the properties (e.

View Article and Find Full Text PDF

Bioinspired origami-based soft prosthetic knees.

Nat Commun

December 2024

Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing, China.

Prosthetic knees represent a prevalent solution for above-knee amputation rehabilitation. However, satisfying the ambulation requirements of users while achieving their comfort needs in terms of lightweight, bionic, shock-absorbing, and user-centric, remains out of reach. Soft materials seem to provide alternative solutions as their properties are conducive to the comfort aspect.

View Article and Find Full Text PDF

Creativity and style in music playing originates from constraints and imperfect interactions between instruments and players. Digital and robotic systems have so far been unable to capture this naturalistic playing. Whether as an additional tool for musicians, function restoration with prosthetics, or artificial intelligence-powered systems, the physical embodiment and interactions generated are critical for expression and connection with an audience.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!