When forming the radar situation of a terrain, in order to increase its information content and to extract useful information, multi-position spatially distributed systems for integrating multi-angle radar data established by small-sized UAV-based airborne radars are used. In this case, each radar station belonging to a multi-position system as a probing signal must have its own unique marked signal. Such a setup will allow the signals reflected from ground objects and zones to be "attached" to specific receiving-transmitting positions of the multi-position system. This requirement results from the fact that each transceiver position emits one probing signal, and then receives all the echo signals reflected from the underlying surface and previously emitted by other radar devices of the multi-position system. Such a setup of multi-position systems requires the researcher to look for and investigate specialized systems of marked code structures used to modulate the probing signals in order to identify them in a joint radar channel. Thus, the problem at hand is how to look for and investigate novel marked code structures used to generate a system of probing signals, the use of which will allow it to be "attached" to a specific receiving-transmitting position of a multi-position onboard system and to identify them in a joint radar channel in the course of the remote sensing of the underlying surface. The purpose of this work is to conduct a study on the subject of the squeak and choice of a system of code structures that have a low level of side lobes of autocorrelation functions and uniformly distributed values of the levels of the cross-correlation function. To achieve this goal, the relevance of the study is substantiated in the introduction. The second section analyzes the level of side lobes for classical and modified Barker codes with an asymmetric alphabet. On the basis of this analysis, it was concluded that it is expedient to apply this approach for codes longer than Barker codes. Therefore, in the third section, the features of the generation of M-sequences are considered. The fourth section presents a technique for searching for new marked code structures, taking into account their mutual correlation properties for modifying M-sequences in order to implement multi-positional systems. The fifth section presents computer experiments on the search for marked code structures based on the modifications of M-sequences and presents the numerical characteristics of the correlation properties of the considered marked codes. And finally, in the sixth section, the final conclusions of the study are presented and recommendations are given for their further practical application. The practical significance of this study lies in the fact that the proposed new marked code structures are necessary for the synthesis of probing signals in the implementation of spatially distributed systems that function for the high-probability detection and high-precision determination of the coordinates of physical objects and are also necessary for the formation of radar images in a multi-position mode.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422537 | PMC |
http://dx.doi.org/10.3390/s23156835 | DOI Listing |
Nat Commun
January 2025
Department of Civil and Systems Engineering, Johns Hopkins University, Baltimore, MD, USA.
Direct Ink Writing, an extrusion-based 3D printing technique, has attracted growing interest due to its ability to process a broad range of materials and integrate multifunctional printheads with features such as shape-changing nozzles, in-situ curing, material switching, and material mixing. Despite these advancements, incorporating auxiliary controls into Geometry Code (G-Code), the standard programming language for these printers, remains challenging. G-Code's line-by-line execution requires auxiliary control commands to interrupt the print path motion, causing defects in the printed structure.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA. Electronic address:
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell.
View Article and Find Full Text PDFJ Mol Model
January 2025
PG & Research Department of Mathematics, Sanatana Dharma College, Kerala University, Alappuzha, Kerala, 688003, India.
Holey nanographene, an allotrope of carbon arranged in two dimensions, has gained remarkable attention as a nanomaterial with several potential uses in numerous industries, such as electronics, energy storage, healthcare, and environmental cleanup, because of its high carrier mobility, flexibility, transparency, high surface area, conductivity, and chemical stability. The fundamental holey nanographene is assembled in a linear form to create the holey nanographene chain (HNC) that is being discussed. To fully utilize it in various applications, it is essential to comprehend the basic ideas guiding its behavior at the nanoscale; for that, we find various topological indices for this holey nanographene chain using the cut method.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science and Information Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335009, Taiwan.
In this study, we propose a method for successfully evading antivirus detection by encoding malicious shellcode with fountain codes. The Meterpreter framework for Microsoft Windows 32-bit and 64-bit architectures was used to produce the shellcode used in this investigation. The experimental results proved that detection rates were substantially decreased.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer Science, Shaanxi Normal University, Xi'an 710062, China.
Music generation by AI algorithms like Transformer is currently a research hotspot. Existing methods often suffer from issues related to coherence and high computational costs. To address these problems, we propose a novel Transformer-based model that incorporates a gate recurrent unit with root mean square norm restriction (TARREAN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!