A Light-Weight Cropland Mapping Model Using Satellite Imagery.

Sensors (Basel)

Department of Civil Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates.

Published: July 2023

Many applications in agriculture as well as other related fields including natural resources, environment, health, and sustainability, depend on recent and reliable cropland maps. Cropland extent and intensity plays a critical input variable for the study of crop production and food security around the world. However, generating such variables manually is difficult, expensive, and time consuming. In this work, we discuss a cost effective, fast, and simple machine-learning-based approach to provide reliable cropland mapping model using satellite imagery. The study includes four test regions, namely Iran, Mozambique, Sri-Lanka, and Sudan, where Sentinel-2 satellite imagery were obtained with assigned NDVI scores. The solution presented in this paper discusses a complete pipeline including data collection, time series reconstruction, and cropland extent and crop intensity mapping using machine learning models. The approach proposed managed to achieve high accuracy results ranging between 0.92 and 0.98 across the four test regions at hand.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422232PMC
http://dx.doi.org/10.3390/s23156729DOI Listing

Publication Analysis

Top Keywords

satellite imagery
12
cropland mapping
8
mapping model
8
model satellite
8
reliable cropland
8
cropland extent
8
test regions
8
light-weight cropland
4
imagery applications
4
applications agriculture
4

Similar Publications

Long-term reconstructed vegetation index dataset in China from fused MODIS and Landsat data.

Sci Data

January 2025

Institute of Carbon Neutrality, Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, 100091, China.

The vegetation index is a key satellite-based variable used to monitor global vegetation distribution and growth. However, existing vegetation index datasets face limitations in achieving both high spatial and temporal resolution, restricting their application potential. This study revised a machine learning spatiotemporal fusion model (InENVI) to produce a high-resolution NDVI dataset with 8-day temporal and 30 m spatial resolution, covering China from 2001 to 2020.

View Article and Find Full Text PDF

For change detection in synthetic aperture radar (SAR) imagery, amplitude change detection (ACD) and coherent change detection (CCD) are widely employed. However, time-series SAR data often contain noise and variability introduced by system and environmental factors, requiring mitigation. Additionally, the stability of SAR signals is preserved when calibration accounts for temporal and environmental variations.

View Article and Find Full Text PDF

Dual-Modal Approach for Ship Detection: Fusing Synthetic Aperture Radar and Optical Satellite Imagery.

Sensors (Basel)

January 2025

Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

The fusion of synthetic aperture radar (SAR) and optical satellite imagery poses significant challenges for ship detection due to the distinct characteristics and noise profiles of each modality. Optical imagery provides high-resolution information but struggles in adverse weather and low-light conditions, reducing its reliability for maritime applications. In contrast, SAR imagery excels in these scenarios but is prone to noise and clutter, complicating vessel detection.

View Article and Find Full Text PDF

Spatial Characterization of Woody Species Diversity in Tropical Savannas Using GEDI and Optical Data.

Sensors (Basel)

January 2025

Forest Biometrics and Remote Sensing Laboratory (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, P.O. Box 110410, Gainesville, FL 32611, USA.

Developing the capacity to monitor species diversity worldwide is of great importance in halting biodiversity loss. To this end, remote sensing plays a unique role. In this study, we evaluate the potential of Global Ecosystem Dynamics Investigation (GEDI) data, combined with conventional satellite optical imagery and climate reanalysis data, to predict in situ alpha diversity (Species richness, Simpson index, and Shannon index) among tree species.

View Article and Find Full Text PDF

The war in Ukraine is having a dramatic impact on the physical, chemical and biological soil properties. A comprehensive study of the war-affected soils during the ongoing war is a challenging task owing to the many constrains that arise during fieldworks. Remote sensing data is the best solution for overall analysis of physical soil disturbances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!