Quality-related prediction in the continuous-casting process is important for the quality and process control of casting slabs. As intelligent manufacturing technologies continue to evolve, numerous data-driven techniques have been available for industrial applications. This case study was aimed at developing a machine-learning algorithm, capable of predicting slag inclusion defects in continuous-casting slabs, based on process condition sensor data. A large dataset consisting of sensor data from nearly 7300 casting samples has been analyzed, with the empirical mode decomposition (EMD) algorithm utilized to process the multi-modal time series. The following machine-learning algorithms have been examined: K-Nearest neighbors, support vector classifier (linear and nonlinear kernels), decision trees, random forests, AdaBoost, and Artificial Neural Networks. Four over-sampling or under-sampling algorithms have been adopted to solve imbalanced data distribution. In the experiment, the optimized random forest outperformed other machine-learning algorithms in terms of recall and ROC AUC, which could provide valuable insights for quality control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422374 | PMC |
http://dx.doi.org/10.3390/s23156719 | DOI Listing |
Viruses
November 2024
Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel.
In this study, we introduce a novel approach that integrates interpretability techniques from both traditional machine learning (ML) and deep neural networks (DNN) to quantify feature importance using global and local interpretation methods. Our method bridges the gap between interpretable ML models and powerful deep learning (DL) architectures, providing comprehensive insights into the key drivers behind model predictions, especially in detecting outliers within medical data. We applied this method to analyze COVID-19 pandemic data from 2020, yielding intriguing insights.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
Freezing of gait (FOG) is a walking disturbance that can lead to postural instability, falling, and decreased mobility in people with Parkinson's disease. This research used machine learning to predict and detect FOG episodes from plantar-pressure data and compared the performance of decision tree ensemble classifiers when trained on three different datasets. Dataset 1 ( = 11) was collected in a previous study.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Organ Support and Automation Technologies Group, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA.
Prehospital medical care is a major challenge for both civilian and military situations as resources are limited, yet critical triage and treatment decisions must be rapidly made. Prehospital medicine is further complicated during mass casualty situations or remote applications that require more extensive medical treatments to be monitored. It is anticipated on the future battlefield where air superiority will be contested that prolonged field care will extend to as much 72 h in a prehospital environment.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Nokia Bell Labs, 1082 Budapest, Hungary.
Human action recognition using WiFi channel state information (CSI) has gained attention due to its non-intrusive nature and potential applications in healthcare, smart environments, and security. However, the reliability of methods developed for CSI-based action recognition is often contingent on the quality of the datasets and evaluation protocols used. In this paper, we uncovered a critical data leakage issue, which arises from improper data partitioning, in a widely used WiFi CSI benchmark dataset.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Facultad de Ingeniería, Pontificia Universidad Javeriana, Bogotá 110231, Colombia.
Cutaneous leishmaniasis is a parasitic disease that poses significant diagnostic challenges due to the variability of results and reliance on operator expertise. This study addresses the development of a system based on machine learning algorithms to detect spp. parasite in direct smear microscopy images, contributing to the diagnosis of cutaneous leishmaniasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!