The present review article discusses the elementary concepts of the sensor mechanism and various types of materials used for sensor applications. The electrospinning method is the most comfortable method to prepare the device-like structure by means of forming from the fiber structure. Though there are various materials available for sensors, the important factor is to incorporate the functional group on the surface of the materials. The post-modification sanction enhances the efficiency of the sensor materials. This article also describes the various types of materials applied to chemical and biosensor applications. The chemical sensor parts include acetone, ethanol, ammonia, and CO, HO, and NO molecules; meanwhile, the biosensor takes on glucose, uric acid, and cholesterol molecules. The above materials have to be sensed for a healthier lifestyle for humans and other living organisms. The prescribed review articles give a detailed report on the Electrospun materials for sensor applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422532PMC
http://dx.doi.org/10.3390/s23156705DOI Listing

Publication Analysis

Top Keywords

sensor applications
12
types materials
8
materials sensor
8
materials
7
sensor
6
review electrospun
4
electrospun nanofiber
4
nanofiber composites
4
composites efficient
4
efficient electrochemical
4

Similar Publications

We have successfully prepared a significant number of nanowires from non-toxic silicon sources. Compared to the SiO silicon source used in most other articles, our preparation method is much safer. It provides a simple and harmless new preparation method for the preparation of silicon nanowires.

View Article and Find Full Text PDF

Pressure and temperature sensing simultaneously and independently is crucial for creating electronic skin that replicates complex sensory functions of human skin. Thin-film transistor (TFT) arrays with sensors have enabled cross-talk-free spatial sensing. However, the thermal dependence of charge transport in semiconductors has resulted in interference between thermal and pressure stimuli.

View Article and Find Full Text PDF

Breath analysis is increasingly recognized as a powerful noninvasive diagnostic technique, and a plethora of exhaled volatile biomarkers have been associated with various diseases. However, traditional analytical methodologies are not amenable to high-throughput diagnostic applications at the point of need. An optical spectroscopic technique, surface-enhanced Raman spectroscopy (SERS), mostly used in the research setting for liquid sample analysis, has recently been applied to breath-based diagnostics.

View Article and Find Full Text PDF

Nucleic Acid Aptamer-Based Sensors for Bacteria Detection: A Review.

Bioessays

January 2025

Department of Biology and Medicine ,college of Chemistry and Chemical Engineering, Central South University, Changsha, China.

Bacteria have a significant impact on human production and life, endangering human life and health, so rapid detection of infectious agents is essential to improve human health. Aptamers, which are pieces of oligonucleotides (DNA or RNA) have been applied to biosensors for bacteria detection due to their high affinity, selectivity, robust chemical stability, and their compatibility with various signal amplification and signal transduction mechanisms. In this review, we summarize the different bacterial aptamers selected in recent years using SELEX technology and discuss the differences in optical and electrochemical bacterial aptamer sensors.

View Article and Find Full Text PDF

Study Objectives: This paper validates TipTraQ, a compact home sleep apnea testing (HSAT) system. TipTraQ comprises a fingertip-worn device, a mobile application, and a cloud-based deep learning artificial intelligence (AI) system. The device utilizes PPG (red, infrared, and green channels) and accelerometer sensors to assess sleep apnea by the AI system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!