A desire to achieve optimal electron transport from the electron transport layer (ETL) towards the emissive layer (EML) is an important research factor for the realization of high performance quantum dot light-emitting diodes (QD-LEDs). In this paper, we study the effect of a single, double, and electron transport layer sandwiched Poly(4-vinylpyridine) (PVPy here on) on the charge injection balance and on the overall device performance of InP-based red quantum dot light emitting diodes (red QD-LEDs). The results showed general improvement of device characteristic performance metrics such as operational life with incorporation of a PVPy interlayer. The best performance was observed at a lower concentration of PVPy (@ 0.1 mg/mL) in interlayer with continual worsening in performance as PVPy concentration in the interlayer increased in other fabricated devices. The AFM images obtained for the different materials reported improved surface morphology and overall improved surface properties, but decreased overall device performance as PVPy concentration in interlayer was increased. Furthermore, we fabricated two special devices: in the first special device, a single 0.1 mg/mL PVPy sandwiched between two ZnO ETL layers, and in the second special device, two 0.1 mg/mL PVPy interlayers were inter-sandwiched between two ZnO ETL layers. Particular emphasis was placed on monitoring the maximum obtained EQE and the maximum obtained luminance of all the devices. The first special device showed better all-round improved performance than the second special device compared to the reference device (without PVPy) and the device with a single 0.1 mg/mL PVPy interlayer stacked between ZnO ETL and the emissive layer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422574 | PMC |
http://dx.doi.org/10.3390/polym15153308 | DOI Listing |
Pacing Clin Electrophysiol
December 2024
Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, New York, USA.
Leadless pacing technology now includesdedicated atrial helix-fixation leadless pacemakers (LPs), expanding theapplication of leadless devices for patients with sinus node dysfunction andatrioventricular block during sinus rhythm. This first reportedcase-series of atrial LPs describes and discusses the potential use-casescenarios of recently approved helix-fixation atrial LPs. The article highlights important concepts regarding their use, including implantationtechniques, programming, battery conservation, and the low rate of progressionof AV block in patients implanted with AAI(R) pacemakers.
View Article and Find Full Text PDFArch Orthop Trauma Surg
December 2024
Sitaram Bhartia Institute of Science and Research, New Delhi, India.
Purpose: Achieving precise postoperative alignment is critical for the long-term success of total knee arthroplasty (TKA). Long-leg standing radiograph (LLR) at 6 weeks post-op is the gold standard for assessing alignment, but its reliance on weight-bearing and positioning makes it less practical in the early postoperative period. Supine computed tomography scanogram (CTS) offers a potential alternative.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Graduate School of Biomedical Engineering, Faculty of Engineering, and Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Kensington Campus, Sydney, NSW, 2052, Australia.
Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, China.
Background: Melasma, a common skin pigmentation disease, can negatively impact patients' mental health, social interactions, and physical appearance. Although we now have several treatments accessible, such as medicines, chemical peels, and phototherapy, which can help ease symptoms to some extent, the requirement for a long-term effective and safe treatment for patients is far from met. In the face of this problem, microneedling, as an innovative treatment, provides a new avenue for treating melasma.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
December 2024
Fakher Mechatronic Research Center, Kerman University of Medical Sciences, Kerman, Iran.
Background: Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Mobile technologies enable Parkinson's patients to improve their quality of life, manage symptoms, and enhance overall well-being through various applications (apps). There is no integrated list of specific capabilities available to cater to the unique needs of Parkinson's patient-focused mobile apps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!