Nowadays, industries place a strong emphasis on low-cost, biodegradable materials with long lifespans. As a result, businesses are concentrating on creating composite materials utilizing the world's plentiful supply of natural fibers. In this study, acacia and raffia fibers are combined with epoxy resin and a hand layup method to create a biodegradable composite laminate. This article investigates the effect of fiber orientation on the mechanical and morphological evaluation of composite materials that have been manufactured. Three different kinds of composites were fabricated in this work: Composite 1, which contained acacia fiber; Composite 2, which was built of acacia and raffia fiber; and Composite 3, which was made of raffia fiber. While Composite 2 is a hybrid composite in this instance, Composites 1 and 3 are monofiber composites. In accordance with the ASTM standards, testing was performed to investigate the different mechanical behaviors, including tensile, flexural, double shear, delamination, hardness, and impact. The results demonstrate that Composite 1 has strong tensile strength, flexural strength, double shear, and hardness tests with a 45° fiber orientation. The 90° fiber orientation of Composite 1 performs well in the inter delamination test. The result demonstrates that composite 1 of type 0 absorbs greater energy. Additionally, Scanning electron microscopy was used to conduct morphological examinations in order to investigate the internal structural failure of the composites. It was found that the composite laminate has fiber cracks, pullouts, and voids, which were reduced with the right curing times and stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422233 | PMC |
http://dx.doi.org/10.3390/polym15153249 | DOI Listing |
Int J Biol Macromol
January 2025
Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (Bangkhunthian Campus), Bangkok 10150, Thailand. Electronic address:
This study aimed to produce a novel resistant maltodextrin (RMD) from the remaining starch in cassava pulp via pyrodextrinization and enzymatic hydrolysis. The optimum conditions involved a temperature of 180 °C, 0.5 % HCl, and a reaction time of 5 h, resulting in a significant RMD yield (18.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain.
The current study addresses the pressing issue of unsustainable water management, particularly in regions experiencing high water stress. It focuses on examining the viability of polymeric membranes composed of biobased materials, mainly chitosan, for various sustainable water management solutions. The membranes evaluated in the study were blends of PVC with either chitosan-silica or charcoal-silica, designed to enhance their functionality and performance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:
Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
Exploring innovative and sustainable routes for the production of biodegradable biomass-based materials is critical to promote a circular carbon economy and carbon neutrality goals. Fossil-based non-biodegradable plastic waste poses a nonnegligible threat to humans and the ecological environment, and biomass-based functional materials are becoming increasingly viable alternatives. Lignin, a naturally occurring macromolecular polymer, is green and renewable resource rich in aromatic rings, with biodegradability, biocompatibility, and excellent processability for eco-friendly composites.
View Article and Find Full Text PDFiScience
January 2025
Abteilung Paläontologie, Bonner Institut für Organismische Biologie, Universität Bonn, 53115 Bonn, Germany.
Bone is formed by specialized cells whose activity allows bone to grow, change shape, and repair itself. Its composite structure of collagen fibrils and bioapatite nanocrystals gives bone exceptional mechanical strength. Using scanning electron microscopy, we show in fossil ichthyosaurs, 150 to 200 million years old, from the Jurassic of France and the UK, abundant and direct evidence of cellular activity on the fossilized forming, resting, and resorbing surfaces of bone trabeculae, as well as bone fibrils, Sharpey fibers, and cartilage fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!