The development of Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM) systems has provided significant advances in the processing and characterization of polymers. A fundamental understanding of ion-sample interactions is still missing despite FIB-SEM being routinely applied in microstructural analyses of polymers. This study applies Secondary Electron Hyperspectral Imaging to reveal oxygen and xenon plasma FIB interactions on the surface of a polymer (in this instance, polypropylene). Secondary Electron Hyperspectral Imaging (SEHI) is a technique housed within the SEM chamber that exhibits multiscale surface sensitivity with a high spatial resolution and the ability to identify carbon bonding present using low beam energies without requiring an Ultra High Vacuum (UHV). SEHI is made possible through the use of through-the-lens detectors (TLDs) to provide a low-pass SE collection of low primary electron beam energies and currents. SE images acquired over the same region of interest from different energy ranges are plotted to produce an SE spectrum. The data provided in this study provide evidence of SEHI's ability to be a valuable tool in the characterization of polymer surfaces post-PFIB etching, allowing for insights into both tailoring polymer processing FIB parameters and SEHI's ability to be used to monitor serial FIB polymer surfaces in situ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10422415 | PMC |
http://dx.doi.org/10.3390/polym15153247 | DOI Listing |
Life Sci Space Res (Amst)
February 2025
National Research Council of Italy, Rome, Italy. Electronic address:
The paper presents the variations of space radiation (primary and secondary galactic cosmic rays (GCR) absorbed dose rate in silicon and flux) measured during the first-ever commercial suborbital flight of the Virgin Galactic (VG) SpaceShipTwo Unity on 29 June 2023. A Portable Dosimeter-Spectrometer Liulin-CNR-VG is used. It is developed in the Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS) under a scientific contract with National Research Council of Italy (CNR), Italy.
View Article and Find Full Text PDFNat Commun
January 2025
Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
Hydrous aluminosilicates are important deep water-carriers in sediments subducting into the deep mantle. To date, it remains enigmatic how hydrous aluminosilicates withstand extremely high temperatures in the mantle transition zone. Here we systematically investigate the crystal structures and chemical compositions of typical hydrous aluminosilicates using single-crystal X-ray diffraction, electron probe microanalyzer, and nanoscale secondary ion mass spectrometry.
View Article and Find Full Text PDFRadiat Res
January 2025
Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.
To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Wood Processing and Biomaterials, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 1176, 16500 Prague, Czech Republic.
Electron microscopy (EM) is a key tool for studying the microstructure of wood; however, observing uncoated samples poses a challenge due to surface charging. This study aims to identify the critical voltage that allows for the effective observation of uncoated wood samples without significant loading. As part of the experiment, samples of different wood species were tested, including Acacia ( L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!