To guide therapeutic strategies and to monitor the state changes in the disease, a low-cost, portable, and easily fabricated microfluidic-chip-integrated three-dimensional (3D) microchamber was designed for capturing and analyzing breast cancer cells. Optimally, a colorimetric sensor array was integrated into a microfluidic chip to discriminate the metabolites of the cells. The ultraviolet polymerization characteristic of poly(ethylene glycol) diacrylate (PEGDA) hydrogel was utilized to rapidly fabricate a three-layer hydrogel microfluidic chip with the designed structure under noninvasive 365 nm laser irradiation. 2-Hydroxyethyl methacrylate (HEMA) was added to the prepolymer in order to increase the adhesive capacity of the microchip's surface for capturing cells. 1-Vinyl-2-pyrrolidone (NVP) was designed to improve the toughness and reduce the swelling capacity of the hydrogel composite. A non-toxic 3D hydrogel microarray chip (60 mm × 20 mm × 3 mm) with low immunogenicity and high hydrophilicity was created to simulate the real physiological microenvironment of breast tissue. The crisscross channels were designed to ensure homogeneous seeding density. This hydrogel material displayed excellent biocompatibility and tunable physical properties compared with traditional microfluidic chip materials and can be directly processed to obtain the most desirable microstructure. The feasibility of using a PEGDA hydrogel microfluidic chip for the real-time online detection of breast cancer cells' metabolism was confirmed using a specifically designed colorimetric sensor array with 16 kinds of porphyrin, porphyrin derivatives, and indicator dyes. The results of the principal component analysis (PCA), the hierarchical cluster analysis (HCA), and the linear discriminant analysis (LDA) suggest that the metabolic liquids of different breast cells can be easily distinguished with the developed PEGDA hydrogel microfluidic chip. The PEGDA hydrogel microfluidic chip has potential practicable applicability in distinguishing normal and cancerous breast cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421435 | PMC |
http://dx.doi.org/10.3390/polym15153183 | DOI Listing |
Lab Chip
January 2025
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.
In regular biosample cryopreservation operations, dropwise pipetting and continuous swirling are ordinarily needed to prevent cell damage ( sudden osmotic change, toxicity and dissolution heat) caused by the high-concentration cryoprotectant (CPA) addition process. The following CPA removal process after freezing and rewarming also requires multiple sample transfer processes and manual work. In order to optimize the cryopreservation process, especially for trace sample preservation, here we present a microfluidic approach integrating CPA addition, sample storage, CPA removal and sample resuspension processes on a 30 × 30 × 4 mm three-layer chip.
View Article and Find Full Text PDFRandom lasers (RLs) with a simple structure and low-cost properties have been recognized as an ideal analytical platform and are still challenging for liquid detecting, remaining beset for low sensitivity, complicated operation, and large analyte consumption. Here, inspired by a microfluidic sensor, a microtubule structured random laser for multifunctional sensing is demonstrated. The random laser is achieved resorting to a curly PMMA film with gain and scatterers embedded in it.
View Article and Find Full Text PDFMetasurfaces offer a powerful tool to realize label-free and highly sensitive Raman spectroscopy. Embedding metasurfaces into microfluidic channels is promising to establish a new characterizing platform for microfluids. In this Letter, we present a highly stable method for improving the Raman scattering intensity of biological microfluids by using a microfluidic chip embedded with a plasmonic metasurface.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China.
To facilitate on-site detection by nonspecialists, there is a demand for the development of portable "sample-to-answer" devices capable of executing all procedures in an automated or easy-to-operate manner. Here, we developed an automated detection device that integrated a magnetofluidic manipulation system and a signal acquisition system. Both systems were controllable via a smartphone.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, PR China. Electronic address:
Proteomics provides an understanding of biological systems by enabling the detailed study of protein expression profiles, which is crucial for early disease diagnosis. Microfluidic-based proteomics enhances this field by integrating complex proteome analysis into compact and efficient systems. This review focuses on developing microfluidic chip structures for proteomics, covering on-chip sample pretreatment, protein extraction, purification, and identification in recent years.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!