AI Article Synopsis

  • * After a 30-day pretreatment, the inner sheaths showed a seven-fold increase in total reducing sugars and a five-fold increase in glucose compared to untreated samples, while no improvement was seen in the treated peels.
  • * Scanning electron microscopy revealed that pretreated inner sheaths had modified structures with fiber detachment, cell wall collapse, and pore formation, but the peel fibers remained unchanged and more ordered.

Article Abstract

The white-rot fungus was used for biological pretreatment of peach palm () lignocellulosic wastes. Non-treated and treated inner sheaths and peel were submitted to hydrolysis using a commercial cellulase preparation from . The amounts of total reducing sugars and glucose obtained from the 30 d-pretreated inner sheaths were seven and five times higher, respectively, than those obtained from the inner sheaths without pretreatment. No such improvement was found, however, in the pretreated peels. Scanning electronic microscopy of the lignocellulosic fibers was performed to verify the structural changes caused by the biological pretreatments. Upon the biological pretreatment, the lignocellulosic structures of the inner sheaths were substantially modified, making them less ordered. The main features of the modifications were the detachment of the fibers, cell wall collapse and, in several cases, the formation of pores in the cell wall surfaces. The peel lignocellulosic fibers showed more ordered fibrils and no modification was observed after pre-treatment. In conclusion, a seven-fold increase in the enzymatic saccharification of the inner sheath was observed after pre-treatment, while no improvement in enzymatic saccharification was observed in the peel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420912PMC
http://dx.doi.org/10.3390/plants12152824DOI Listing

Publication Analysis

Top Keywords

inner sheaths
16
enzymatic saccharification
12
biological pretreatment
12
peach palm
8
lignocellulosic fibers
8
cell wall
8
observed pre-treatment
8
inner
5
improving enzymatic
4
saccharification peach
4

Similar Publications

Background: A surgical robot with force feedback can guarantee precise and gentle manipulation for endometrial repair, ensuring the effectiveness and safety of the manipulation. However, the design of force sensors for surgical robots is challenging due to the limited anatomical space and the requirement for continuous rotation.

Methods: This paper presents a novel force-sensing surgical instrument for endometrial repair, including an inner scraping instrument and an outer force sensing sheath.

View Article and Find Full Text PDF

Diagnosis of Reverse-Connection Defects in High-Voltage Cable Cross-Bonded Grounding System Based on ARO-SVM.

Sensors (Basel)

January 2025

Hubei Key Laboratory of Power Equipment & System Security for Integrated Energy, School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China.

High-voltage (HV) cables are increasingly used in urban power grids, and their safe operation is critical to grid stability. Previous studies have analyzed various defects, including the open circuit in the sheath loop, the flooding in the cross-bonded link box, and the sheath grounding fault. However, there is a paucity of research on the defect of the reverse direction between the inner core and the outer shield of the coaxial cable.

View Article and Find Full Text PDF

Enhancing nitrogen (N) fixation in rice plants can reduce N fertilizer application and contribute to sustainable rice production, particularly under low-N conditions. However, detailed microbial and metabolic characterization of N fixation in rice stems, unlike in the well-studied roots, has not been investigated. Therefore, the aim of this study was to determine the active N-fixing sites, their diazotroph communities, and the usability of possible carbon sources in stems compared with roots.

View Article and Find Full Text PDF

Proximal protection devices for carotid artery stenting - A benchtop assessment of flow reversal performance.

AJNR Am J Neuroradiol

January 2025

From the Department of Radiology (J.L., E.A.B., C.B., J.C., R.K., W.B., D.F.K), and Department of Neurologic Surgery (Y.C.S., R.K., W.B.), Mayo Clinic, Rochester, MN, United States; Department of Stroke Research (J.L.), Vall d'Hebron Research Institute, Barcelona, Spain; From the Global Institute of Future Technology (Y.L.), Shanghai Jiao Tong University, Shanghai, China; Department of Neurointerventional Radiology (J.C.), Bicetre University Hospital, Le Kremlin Bicetre, France.

Background And Purpose: Proximal protection devices, such as TransCarotid Artery Revascularization (TCAR, SilkRoad Medical, Sunnyvale), aim to yield better outcomes in carotid artery stenting (CAS) than distal protection devices by preventing plaque embolization to the brain. However, transfemoral catheters may not fully reverse flow from the external carotid artery (ECA) to the internal carotid artery (ICA). We assess a new balloon-sheath device, Femoral Flow Reversal Access for Carotid Artery Stenting (FFRACAS), for this purpose.

View Article and Find Full Text PDF

Transcatheter Aspiration of Tricuspid Vegetation.

JACC Case Rep

December 2024

Jesselson Integrated Heart Center, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.

Objective: This study sought to present the endovascular approach of transcatheter aspiration using the FlowTriever (Inari Medical) aspiration system for high surgical risk patients with right-sided infective endocarditis.

Key Steps: General anesthesia and transesophageal echocardiogram guidance; ultrasonography-guided femoral vein access, preclosure sutures, and insertion of a 24-F sheath; insertion of straight 24-F aspiration cannula over a stiff wire, parked in the superior vena cava; introduction of a 20-F curved cannula inside the 24-F cannula to create a telescopic assembly; accurate positioning using the right ventricle inflow/outflow projection in biplane mode; adjustment of the curved cannula radius by sliding the inner cannula in and out inside the mother cannula; manual aspiration of the vegetation; Postaspiration transesophageal echocardiogram assessment.

Potential Pitfalls: Avoid leaflet and annular injury and account for potential embolization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!