The aim of this study was to improve the extraction method for urinary organic acids by miniaturizing and automating the process. Currently, manual extraction methods are commonly used, which can be time-consuming and lead to variations in test results. To address these issues, we reassessed and miniaturized the in-house extraction method, reducing the number of steps and the sample-to-solvent volumes required. The evaluated miniaturized method was translated into an automated extraction procedure on a MicroLab (ML) Star (Hamilton Technologies) liquid handler. This was then validated using samples obtained from the ERNDIM External Quality Assurance program. The organic acid extraction method was successfully miniaturized and automated using the Autosampler robot. The linear range for most of the thirteen standard analytes fell between 0 to 300 mg/L in spiked synthetic urine, with low (50 mg/L), medium (100 mg/L), and high (500 mg/L) levels. The correlation coefficient (r) for most analytes was >0.99, indicating a strong relationship between the measured values. Furthermore, the automated extraction method demonstrated acceptable precision, as most organic acids had coefficients of variation (CVs) below 20%. In conclusion, the automated extraction method provided comparable or even superior results compared to the current in-house method. It has the potential to reduce solvent volumes used during extraction, increase sample throughput, and minimize variability and random errors in routine diagnostic settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420839PMC
http://dx.doi.org/10.3390/molecules28155927DOI Listing

Publication Analysis

Top Keywords

extraction method
24
automated extraction
12
extraction
9
urinary organic
8
organic acid
8
method
8
organic acids
8
miniaturization automation
4
automation protocol
4
protocol urinary
4

Similar Publications

Alcohol-related cirrhosis (AC) is a condition that impacts in immunity. We analyzed changes over time in CD4subsets in AC-patients. We included patients with alcohol use disorder admitted at least twice for treatment.

View Article and Find Full Text PDF

Background: Opioids are still being prescribed to manage acute postsurgical pain. Unnecessary opioid prescriptions can lead to addiction and death, as unused tablets are easily diverted.

Methods: To determine whether combination nonopioid analgesics are at least as good as opioid analgesics, a multisite, double-blind, randomized, stratified, noninferiority comparative effectiveness trial was conducted, which examined patient-centered outcomes after impacted mandibular third-molar extraction surgery.

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Introduction: Pain is one of the most frequently reported symptoms in hemodialyzed (HD) patients, with prevalence rates between 33% and 82%. Risk factors for chronic pain in HD patients are older age, long-lasting dialysis history, several concomitant diseases, malnutrition, and others. However, chronic pain assessment in HD patients is rarely performed by specialists in pain medicine, with relevant consequences in terms of diagnostic and treatment accuracy.

View Article and Find Full Text PDF

Machine learning techniques for non-destructive estimation of plum fruit weight.

Sci Rep

January 2025

Crop and Horticultural Science Research Department, Mazandaran Agricultural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Tajrish, Iran.

Plum fruit fresh weight (FW) estimation is crucial for various agricultural practices, including yield prediction, quality control, and market pricing. Traditional methods for estimating fruit weight are often destructive, time-consuming, and labor-intensive. In this study, we addressed the problem of predicting plum FW using artificial intelligence (AI) methods based on fruit dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!