Considering the ever-increasing interests in natural gas hydrates, a better and more precise knowledge of how host sediments interact with hydrates and affect the formation process is crucial. Yet less is reported for the effects of sediments on structure II hydrate formation with complex guest compositions. In this study, experimental simulations were performed based on the natural reservoir in Qilian Mountain permafrost in China (QMP) due to its unique properties. Mixed gas hydrates containing CH, CH, CH, and CO were synthesized with the presence of natural sediments from QMP, with quartz sands, and without sediments under identical p-T conditions. The promoting effects of sediments regardless of the grain size and species were confirmed on hydrate formation kinetics. The ice-to-hydrate conversion rate with quartz sand and natural QMP sediments increased by 23.5% and 32.7%, respectively. The compositions of the initial hydrate phase varied, but the difference became smaller in the resulting hydrate phases, having reached a steady state. Beside the structure II hydrate phase, another coexisting solid phase, neither ice nor structure I hydrate, was observed in the system with QMP sediments, which was inferred as an amorphous hydrate phase. These findings are essential to understand the mixed gas hydrates in QMP and may shed light on other natural hydrate reservoirs with complex gas compositions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421482 | PMC |
http://dx.doi.org/10.3390/molecules28155887 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Gas and Fire Control for Mines, Ministry of Education, Xuzhou, 221116, China.
Confined space fires could easily cause serious casualties and property damage, and foam is an effective means of preventing confined space fires. The existing foam generator does not have both momentum and foam expansion rate (FER) and is poorly suited to confined spaces. In order to develop a foam generator suitable for confined space fire protection, an in-depth analysis of the physical foaming characteristics of self-suction foam is required, and the structure of the foam generator is optimized accordingly.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Laboratorio de Espectroscopía Atómica y Molecular (LEAM), Universidad Industrial de Santander, Colombia.
Illite mineral is present in shale rocks, and its wettability behavior is significant for the oil and gas industry. In this work, the pH effects on the affinity between the (001) and (010) crystallographic planes of illite K(SiAl)(AlMg)O(OH) and direct and inverse emulsions were studied using molecular dynamics simulations. To develop the simulations, an atomistic model of illite was constructed following Löwenstein's rule.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919 Republic of Korea.
The simultaneous removal reaction (SRR) is a pioneering approach for achieving the simultaneous removal of anthropogenic NO and CO pollutants through catalytic reactions. To facilitate this removal across diverse industrial fields, it is crucial to understand the trade-offs and synergies among the multiple reactions involved in the SRR process. In this study, we developed mixed metal oxide nanostructures derived from layered double hydroxides as catalysts for the SRR, achieving high catalytic conversions of 93.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States.
Mixed-matrix membranes (MMMs) with favorable interfacial interactions between dispersed and continuous phases offer a promising approach to overcome the traditional trade-off between permeability and selectivity in membrane-based gas separation. In this study, we developed free-standing MMMs by embedding pristine and surface-modified TiCT MXenes into Matrimid 5218 polymer for efficient CO/CH separation. Two-dimensional TiCT with adjustable surface terminations provided control over these critical interfacial interactions.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politécnica de Catalunya, C/Eduard Maristany, 10-14, 08019 Barcelona, Spain.
The transition from insulator to electro-responsive has been successfully achieved by earlier studies for some inorganic materials by applying external stimuli that modify their 3D and/or electronic structures. In the case of insulating polymers, this transition is frequently accomplished by mixing them with other electroactive materials, even though a few physical treatments that induce suitable chemical modifications have also been reported. In this work, a smart approach based on the application of an electro-thermal reorientation process followed by a charged gas activation treatment has been developed for transforming insulating 3D printed polymers into electro-responsive materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!