A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

One Material-Opposite Triboelectrification: Molecular Engineering Regulated Triboelectrification on Silica Surface to Enhance TENG Efficiency. | LitMetric

Molecular engineering is a unique methodology to take advantage of the electrochemical characteristics of materials that are used in energy-harvesting devices. Particularly in triboelectric nanogenerator (TENG) studies, molecular grafting on dielectric metal oxide surfaces can be regarded as a feasible way to alter the surface charge density that directly affects the charge potential of triboelectric layers. Herein, we develop a feasible methodology to synthesize organic-inorganic hybrid structures with tunable triboelectric features. Different types of self-assembled monolayers (SAMs) with electron-donating and withdrawing groups have been used to modify metal oxide (MO) surfaces and to modify their charge density on the surface. All the synthetic routes for hybrid material production have been clearly shown and the formation of covalent bonds on the MO's surface has been confirmed by XPS. The obtained hybrid structures were applied as dopants to distinct polymer matrices with various ratios and fiberization processes were carried out to the prepare opposite triboelectric layers. The formation of the fibers was analyzed by SEM, while their surface morphology and physicochemical features have been measured by AFM and a drop shape analyzer. The triboelectric charge potential of each layer after doping and their contribution to the TENG device's parameters have been investigated. For each triboelectric layer, the best-performing tribopositive and tribonegative material combination was separately determined and then these opposite layers were used to fabricate TENG with the highest efficiency. A comparison of the device parameters with the reference indicated that the best tribopositive material gave rise to a 40% increase in the output voltage and produced 231 V, whereas the best tribonegative one led to a 33.3% rise in voltage and generated 220 V. In addition, the best device collected ~83% more charge than the reference device and came up with 250 V that corresponds to 51.5% performance enhancement. This approach paved the way by addressing the issue of how molecular engineering can be used to manipulate the triboelectric features of the same materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420044PMC
http://dx.doi.org/10.3390/molecules28155662DOI Listing

Publication Analysis

Top Keywords

molecular engineering
12
metal oxide
8
oxide surfaces
8
charge density
8
charge potential
8
triboelectric layers
8
hybrid structures
8
triboelectric features
8
triboelectric
7
surface
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!