The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light-matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with semiconducting and metallic optical properties. In this article, we review most of our work in studies of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the nonlinear optical response of semiconducting MoS, MoSe, MoTe, WS, semimetallic WTe, ZrTe, and metallic NbS and NbSe. The nonlinear optical response from a thermal to non-thermal origin was studied, and the nonlinear refraction index and nonlinear absorption coefficient, where present, were measured. Theoretical support was given to explain the origin of the nonlinear responses, which is very dependent on the spectro-temporal regime of the optical source employed in the studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421368 | PMC |
http://dx.doi.org/10.3390/nano13152267 | DOI Listing |
Anal Chem
January 2025
Nanobiotechnology Department of the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitaetsplatz 1, Senftenberg 01968, Brandenburg, Germany.
Single nanoparticle (NP) cyclic voltarefractometry (CVR), realized as wide-field surface plasmon resonance microscopy (SPRM) in combination with potential cycling, has been proposed and applied to the in situ study of TiO NPs. Electrochemical activity of TiO is mainly observed outside the electrochemical stability window of water. Therefore, the response of individual anatase (a-TiO) and rutile (r-TiO) NPs adsorbed on a gold layer was studied in 0.
View Article and Find Full Text PDFChem Sci
December 2024
Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of Technology Tianjin 300384 China
Non-centrosymmetric (NCS) compounds can exhibit many symmetry-dependent functional properties, yet their rational structure design remains a great challenge. Herein, a strategy to introduce F-centered octahedra to construct a perovskite-type framework filled by π-conjugated [BO] dimers is proposed to obtain NCS compounds. The first examples of antiperovskite or double antiperovskite borate fluorides, [(M/Ba)Ca]F[BO] (M = K, Rb) and [CsBaCa]F[BO], have been successfully designed and synthesized.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Department of Ophthalmology, Laboratory of Optometry and Vision Sciences, Department of Optometry and Visual Science. West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Myopia, a major public health problem, involves axial elongation and thinning of all layers of the eye, including sclera, choroid and retina, which defocuses incoming light and thereby blurs vision. How the various populations of glia in the retina are involved in the disorder is unclear. Astrocytes and Müller cells provide structural support to the retina.
View Article and Find Full Text PDFiScience
December 2024
Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), School of Laboratory Medicine, Chongqing Medical University, 1 Xueyuan Road, Chongqing 400016, China.
Global pandemic has emphasized the needs for advanced pathogen diagnosis in dealing with newly emerged infectious threats, including the Langya henipavirus (LayV). LayV, as an emerging zoonotic pathogen, has potential to cause pandemic, but lacks of rapid diagnostic tools, particularly at point-of-care level. Here, we leveraged the merits of CRISPR-Cas12a biosensing and established a highly sensitive LayV detection method.
View Article and Find Full Text PDFACS Omega
December 2024
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
We introduce a new abiotic-protein-based substrate for identifying English alphabet characters optically using proteinoids. Proteinoids, which are amino acid polymers produced under thermal stress conditions, have demonstrated promise as materials that are compatible with living organisms and can be used in a wide range of applications. We explore the potential of using proteinoids for the optical stimulation and detection of English alphabet characters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!