Biobased Electronics: Tunable Dielectric and Piezoelectric Cellulose Nanocrystal-Protein Films.

Nanomaterials (Basel)

Robert H. Smith Faculty of Agriculture, Food and Environment and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.

Published: August 2023

Cellulose has been a go-to material for its dielectric properties from the onset of capacitor development. The demand for an energy storage solution continues to grow, but the supply remains limited and relies too often on fossil and mined materials. This work proposes a fully sustainable and green method with which to produce dielectric thin films made of renewable and degradable materials. Cellulose nanocrystals (CNC) made an excellent matrix for the dispersion of proteins and the fabrication of robust transparent thin films with enhanced dielectric permittivity. A range of proteins sources, additives and concentrations allowed for us to control the dielectric permittivity from = 4 to 50. The proteins screened came from animal and plant sources. The films were formed from drying a water suspension of the CNC and proteins through evaporation-induced self-assembly. This yielded nano-layered structures with very high specific surface areas, ideal for energy storage devices. The resulting films were characterized with respect to the electrical, mechanical, piezoelectric, and optical properties to be compared. Electrically conductive (σ = 1.53 × 10 S/m) CNC films were prepared with carbon nanotubes (CNT). The fabricated films were used to make flexible, sustainable, and degradable capacitors by layering protein-based films between CNC-CNT composite films.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10421335PMC
http://dx.doi.org/10.3390/nano13152258DOI Listing

Publication Analysis

Top Keywords

films
9
energy storage
8
thin films
8
dielectric permittivity
8
dielectric
5
biobased electronics
4
electronics tunable
4
tunable dielectric
4
dielectric piezoelectric
4
piezoelectric cellulose
4

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Sequential Infiltration Synthesis of Cadmium Sulfide Discrete Atom Clusters.

Angew Chem Int Ed Engl

January 2025

Material Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois, 60439, United States.

Exposure of soft material templates to alternating volatile chemical precursors can produce inorganic deposition within the permeable template (e.g. a polymer thin film) in a process akin to atomic layer deposition (ALD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!