Traditionally, 3D digitizing sensors have been based on contact measurement. Given the disadvantages of this type of measurement, non-contact sensors such as structured light sensors have gained the attention of many sectors in recent years. The fact that their metrological performance is affected by the optical properties of the digitized material, together with the lack of standards, makes it necessary to develop characterization work to validate materials and calibration artifacts for the qualification and calibration of these sensors. This work compares and optically characterizes different materials and surface finishes of reference spheres used in the calibration of two structured light sensors with different fields of application, with the aim to determine the most suitable sphere material-sensor combination in each case. The contact measurement system of a CMM is used as a reference and, for the processing of the information from the sensors, the application of two different filters is analyzed. The results achieved point to sandblasted stainless steel spheres as the best choice for calibrating or qualifying these sensors, as well as for use as registration targets in digitizing. Tungsten carbide spheres and zirconium are unsuitable for this purpose.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420192 | PMC |
http://dx.doi.org/10.3390/ma16155443 | DOI Listing |
Transl Vis Sci Technol
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
Purpose: To clarify the clinical and imaging characteristics of Candida keratitis using in vivo confocal microscopy (IVCM) for improved early diagnosis and management.
Methods: A retrospective study of 40 patients with Candida keratitis at Beijing Tongren Hospital from January 2015 to December 2023 was conducted. Data included demographics, risk factors, clinical assessments, lab tests, and IVCM images.
Proc Natl Acad Sci U S A
January 2025
State Key Laboratory of Protein and Plant Genetic Engineering, School of Life Science, Peking University, Beijing 100871, People's Republic of China.
Phycobilisomes (PBS) are the major photosynthetic light-harvesting complexes in cyanobacteria and red algae. While the structures of PBS have been determined in atomic resolutions, how PBS are attached to the reaction centers of photosystems remains less clear. Here, we report that a linker protein (LcpA) is required for the attachment of PBS to photosystem II (PSII) in the cyanobacterium sp.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Experimental Physics V, Department of Physics, University of Bayreuth, D-95447 Bayreuth, Germany.
Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Life Science, Anhui Agricultural University, Hefei, 230036, China.
SmbHLH93can activate the expression of SmCHS, SmANS, SmDFR and SmF3H.Overexpression of SmbHLH93promotes anthocyanin biosynthesis. SmbHLH93can interact with SmMYB1 to promote anthocyanin accumulation.
View Article and Find Full Text PDFNanomicro Lett
January 2025
Department of Chemical Engineering, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, UK.
Polymers of intrinsic microporosity (PIMs) have received considerable attention for making high-performance membranes for carbon dioxide separation over the last two decades, owing to their highly permeable porous structures. However, challenges regarding its relatively low selectivity, physical aging, and plasticisation impede relevant industrial adoptions for gas separation. To address these issues, several strategies including chain modification, post-modification, blending with other polymers, and the addition of fillers, have been developed and explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!