This paper presents a novel design methodology that validates and utilizes the results of topology optimization as the final product shape. The proposed methodology aims to streamline the design process by eliminating the need for remodeling and minimizing printing errors through process simulation. It also eliminates the repeated export and import of data between software tools. The study includes a case study involving the steering column housing of a racing car, where Siemens NX Topology Optimization was used for optimization, and verification analysis was conducted using the NX Nastran solver. The final solution was fabricated using AlSi10Mg via direct metal laser sintering on a 3D printer and successfully validated under real conditions. In conclusion, this paper introduces a comprehensive design methodology for the direct utilization of topology optimization, which was validated through a case study, yielding positive results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419469 | PMC |
http://dx.doi.org/10.3390/ma16155422 | DOI Listing |
Integr Org Biol
January 2025
Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
Analyses of form-function relationships are widely used to understand links between morphology, ecology, and adaptation across macroevolutionary scales. However, few have investigated functional trade-offs and covariance within and between the skull, limbs, and vertebral column simultaneously. In this study, we investigated the adaptive landscape of skeletal form and function in carnivorans to test how functional trade-offs among these skeletal regions contribute to ecological adaptations and the topology of the landscape.
View Article and Find Full Text PDFSci Rep
January 2025
Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany.
Inverse design via topology optimization has led to innovations in integrated photonics and offers a promising way for designing high-efficiency on-chip couplers with a minimal footprint. In this work, we exploit topology optimization to design a compact vertical coupler incorporating a bottom reflector, which achieves sub-decibel coupling efficiency on the 220-nm silicon-on-insulator platform. The final design of the vertical coupler yields a predicted coupling efficiency of -0.
View Article and Find Full Text PDFPLoS One
January 2025
Computer Engineering, CCSIT, King Faisal University, Al Hufuf, Kingdom of Saudi Arabia.
This paper presents a low-power, second-order composite source-follower-based filter architecture optimized for biomedical signal processing, particularly ECG and EEG applications. Source-follower-based filters are recommended in the literature for high-frequency applications due to their lower power consumption when compared to filters with alternative topologies. However, they are not suitable for biomedical applications requiring low cutoff frequencies as they are designed to operate in the saturation region.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, M5S 3G8, Canada.
Nanoarchitected materials are at the frontier of metamaterial design and have set the benchmark for mechanical performance in several contemporary applications. However, traditional nanoarchitected designs with conventional topologies exhibit poor stress distributions and induce premature nodal failure. Here, using multi-objective Bayesian optimization and two-photon polymerization, optimized carbon nanolattices with an exceptional specific strength of 2.
View Article and Find Full Text PDFBMC Cancer
January 2025
Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano Di Joannuccio 1, Terni, 05100, Italy.
Prostate cancer (PCa) ranks among the most prevalent malignancies in men, with notable associations to Hereditary Breast and Ovarian Cancer Syndrome (HBOC) and Lynch Syndrome, both linked to germline likely pathogenetic variant/pathogenetic variant (LPV/PV) in genes involved in DNA repair. Among these genes, BRCA2 in PCa patients is the most frequently altered. Despite progresses, challenges in BRCA carriers detection persist, with a quarter of PCa cases lacking family history.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!