Performance Evaluation of Phenol-Resin-Based Adsorbents for Heat Transformation Applications.

Materials (Basel)

Department of Mechanical, Biomedical and Design Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK.

Published: July 2023

Phenol resins (PRs) are considered as relatively inexpensive adsorbents synthesized from agricultural biomass via employing a variety of synthesized procedures. The performance of PR for heat transformation application is not widely investigated. In this regard, the present study aims to evaluate the four PR derivative/refrigerant pairs, namely (i) KOH6-PR/CO, (ii) SAC-2/HFC, (iii) KOH4-PR/ethanol, and (iv) KOH6-PR/ethanol, for adsorption cooling and adsorption heating applications. Ideal cycle analyses and/or thermodynamic modelling approaches were utilized comprising governing heat and mass balance equations and adsorption equilibrium models. The performance of the AHP system is explored by means of specific cooling energy (SCE), specific heating energy (SHE), and coefficient of performance (COP), both for cooling and heating applications, respectively. It has been realized that KOH6-PR/ethanol could produce a maximum SCE of 1080 kJ/kg/cycle and SHE of 2141 kJ/kg/cycle at a regeneration temperature (T) and condenser temperature (T) of 80 °C, and 10 °C, respectively, followed by KOH4-PR/ethanol, SAC-2/HFC-32, and KOH6-PR/CO. The maximum COP values were estimated to be 1.78 for heating and 0.80 for cooling applications, respectively, at T = 80 °C and T = 10 °C. In addition, the study reveals that, corresponding to increase/decrease in condenser/evaporator pressure, both SCE and SHE decrease/increase, respectively; however, this varies in magnitude due to adsorption equilibrium of the studied PR derivative/refrigerant pairs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10420069PMC
http://dx.doi.org/10.3390/ma16155262DOI Listing

Publication Analysis

Top Keywords

heat transformation
8
derivative/refrigerant pairs
8
heating applications
8
adsorption equilibrium
8
°c °c
8
performance
4
performance evaluation
4
evaluation phenol-resin-based
4
phenol-resin-based adsorbents
4
adsorbents heat
4

Similar Publications

Wastewater is commonly contaminated with many pharmaceutical pollutants, so an efficient purification method is required for their removal from wastewater. In this regard, an innovative tertiary Se/SnO@CMC/Fe-GA nanocomposite was synthesized through encapsulation of metal organic frameworks (Fe-glutaric acid) onto Se/SnO-embedded-sodium carboxy methyl cellulose matrix to thoroughly evaluate its effectiveness for adsorption of levofloxacin drug from wastewater. The prepared Se/SnO@CMC/Fe-GA nanocomposite was analyzed via UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) to valuate optical property, size, morphology, thermal stability, and chemical composition.

View Article and Find Full Text PDF

Hydroxide exchange membrane (HEM) water electrolysis is promising for green hydrogen production due to its low cost and excellent performance. However, HEM often has insufficient stability in strong alkaline solutions, particularly under in-situ electrolysis operation conditions, hindering its commercialization. In this study, we discover that the in-situ stability of HEM is primarily impaired by the locally accumulated heat in HEM due to its low thermal conductivity.

View Article and Find Full Text PDF

Insights into the formation of pullulan nanofilm and its feasibility as probiotic-resided oral fast dissolving carrier.

Int J Biol Macromol

January 2025

College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China; Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou 450001, PR China. Electronic address:

Oral fast dissolving films represent a novel dosage form for probiotics. To reduce the dependence of film preparation on synthetic materials, a polysaccharide-based oral fast dissolving nanofilm for probiotics was fabricated through pullulan (PUL) electrospinning. An electrospinnability map of PUL with varying physical properties was developed, identifying a molecular weight of 200 kDa and a concentration of 20 % as suitable conditions for achieving favorable fiber morphology.

View Article and Find Full Text PDF

Nanoparticle-assisted PCR: fundamentals, mechanisms, and forensic implications.

Int J Legal Med

January 2025

Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat, India.

Polymerase Chain Reaction (PCR) has transformed forensic DNA analysis but is still limited when dealing with compromised trace or inhibitor-containing samples. Nanotechnology has been integrated into nanoPCR (nanoparticle-assisted PCR) to overcome these obstacles. Nanomaterials improve PCR sensitivity, selectivity, and efficiency.

View Article and Find Full Text PDF

Background: Although F-prostate-specific membrane antigen-1007 (F-PSMA-1007) positron emission tomography/computed tomography (PET/CT) and multiparametric magnetic resonance imaging (mpMRI) are good predictors of prostate cancer (PCa) prognosis, their combined ability to predict prostate-specific antigen (PSA) persistence has not been thoroughly evaluated. In this study, we assessed whether clinical, mpMRI, and F-PSMA-1007 PET/CT characteristics could predict PSA persistence in patients with PCa treated with radical prostatectomy (RP).

Methods: This retrospective study involved consecutive patients diagnosed with PCa who underwent both preoperative mpMRI and PSMA PET/CT scans between April 2019 and June 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!