Additive manufacturing of Cu is interesting for many applications where high thermal and electric conductivity are required. A problem with printing of Cu with a laser-based process is the high reflectance of the powder for near-infrared wavelengths making it difficult to print components with a high density. In this study, we have investigated laser bed fusion (L-PBF) of Cu using graphene oxide (GO)-coated powder. The powder particles were coated in a simple wet-chemical process using electrostatic attractions between the GO and the powder surface. The coated powder exhibited a reduced reflectivity, which improved the printability and increased the densities from ~90% for uncoated powder to 99.8% using 0.1 wt% GO and a laser power of 500 W. The coated Cu powders showed a tendency for balling using laser powers below 400 W, and increasing the GO concentration from 0.1 to 0.3 wt.% showed an increase in spattering and reduced density. Graphene-like sheet structures could be observed in the printed parts using scanning electron microscopy (SEM). Carbon-filled inclusions with sizes ranging from 10-200 nm could also be observed in the printed parts using transmission electron microscopy (TEM). The GO treatment yielded parts with higher hardness (75.7 HV) and electrical conductivity (77.8% IACS) compared to the parts printed with reference Cu powder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419589 | PMC |
http://dx.doi.org/10.3390/ma16155216 | DOI Listing |
Biomater Adv
January 2025
Department of Orthopaedic Surgery, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore 119228, Singapore.
Osteoporosis, characterized by reduced bone mineral density and increased fracture risk, poses a significant health challenge, particularly for aging populations. Systemic treatments often lead to adverse side effects, emphasizing the need for localized solutions. This study introduces a 3D-printed polycaprolactone (PCL) scaffold embedded with strontium-substituted mesoporous bioactive glass nanoparticles (Sr-MBGNPs) and icariin (ICN) for the targeted regeneration of osteoporotic bone.
View Article and Find Full Text PDFNat Commun
January 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China.
Thin-film composite polyamide (TFC PA) membranes hold promise for energy-efficient liquid separation, but achieving high permeance and precise separation membrane via a facile approach that is compatible with present manufacturing line remains a great challenge. Herein, we demonstrate the use of lignin alkali (LA) derived from waste of paper pulp as an aqueous phase additive to regulate interfacial polymerization (IP) process for achieving high performance nanofiltration (NF) membrane. Various characterizations and molecular dynamics simulations revealed that LA can promote the diffusion and partition of aqueous phase monomer piperazine (PIP) molecules into organic phase and their uniform dispersion on substrate, accelerating the IP reaction and promoting greater interfacial instabilities, thus endowing formation of TFC NF membrane with an ultrathin, highly cross-linked, and crumpled PA layer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium. Electronic address:
The fabrication of objects with complex shape and geometry has been greatly facilitated with the advancements in additive manufacturing. While synthetic polymers like ABS and PLA have found widespread use in extrusion 3D printing, other biobased thermoplastics that are both biodegradable and biocompatible could offer strategic advantages over traditional synthetic materials. In this work dextran of low (20 kDa) and medium (40 kDa) molecular weight (MW) was modified with palmitic acid to obtain meltable polymers for extrusion 3D printing/fused deposition modeling additive manufacturing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.
Phys Med Biol
January 2025
Department of Physics, UCLH NHS Foundation Trust, 250 Euston Road,, London, NW1 2PG, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
There has been an increase in the availability and utilization of commercially available 3D printers in radiotherapy, with applications in phantoms, brachytherapy applicators, bolus, compensators, and immobilization devices. Additive manufacturing in the form of 3D printing has the advantage of rapid production of personalized patient specific prints or customized phantoms within a short timeframe. One of the barriers to uptake has been the lack of guidance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!