AI Article Synopsis

  • The MARCKS protein family in the kidneys helps regulate the epithelial sodium channel (ENaC), which is important for controlling blood pressure.
  • Post-translational modifications like myristoylation and phosphorylation influence MARCKS function, and proteases that degrade MARCKS and ENaC may lead to hypertension.
  • Research showed that in diabetic db/db mice, there's less of the unprocessed MARCKS and more of its cleaved form, along with increased levels of certain PKC isoforms and proteases, indicating that high glucose conditions may enhance MARCKS proteolysis.

Article Abstract

The expression of the myristoylated alanine-rich C-kinase substrate (MARCKS) family of proteins in the kidneys plays an important role in the regulation of the renal epithelial sodium channel (ENaC) and hence overall blood pressure regulation. The function of MARCKS is regulated by post-translational modifications including myristoylation, phosphorylation, and proteolysis. Proteases known to cleave both ENaC and MARCKS have been shown to contribute to the development of high blood pressure, or hypertension. Here, we investigated protein expression and proteolysis of MARCKS, protein expression of multiple protein kinase C (PKC) isoforms, and protein expression and activity of several different proteases in the kidneys of diabetic db/db mice compared to wild-type littermate mice. In addition, MARCKS protein expression was assessed in cultured mouse cortical collecting duct (mpkCCD) cells treated with normal glucose and high glucose concentrations. Western blot and densitometric analysis showed less abundance of the unprocessed form of MARCKS and increased expression of a proteolytically cleaved form of MARCKS in the kidneys of diabetic db/db mice compared to wild-type mice. The protein expression levels of PKC delta and PKC epsilon were increased, while cathepsin B, cathepsin S, and cathepsin D were augmented in diabetic db/db kidneys compared to those of wild-type mice. An increase in the cleaved form of MARCKS was observed in mpkCCD cells cultured in high glucose compared to normal glucose concentrations. Taken together, these results suggest that high glucose may contribute to an increase in the proteolysis of renal MARCKS, while the upregulation of the cathepsin proteolytic pathway positively correlates with increased proteolysis of MARCKS in diabetic kidneys, where PKC expression is augmented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419664PMC
http://dx.doi.org/10.3390/ijms241512484DOI Listing

Publication Analysis

Top Keywords

protein expression
20
diabetic db/db
16
compared wild-type
12
high glucose
12
form marcks
12
marcks
11
expression
9
renal marcks
8
expression proteolysis
8
blood pressure
8

Similar Publications

Extreme Synergy in the Random-Energy Model.

Phys Rev Lett

December 2024

Initiative for the Theoretical Sciences and CUNY-Princeton Center for the Physics of Biological Function, The Graduate Center, CUNY, New York, New York 10016, USA.

The random-energy model (REM), a solvable spin-glass model, has impacted an incredibly diverse set of problems, from protein folding to combinatorial optimization, to many-body localization. Here, we explore a new connection to secret sharing. We derive an analytic expression for the mutual information between any two disjoint thermodynamic subsystems of the REM.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.

View Article and Find Full Text PDF

Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.

View Article and Find Full Text PDF

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Monocyte-cancer cell fusion is mediated by phosphatidylserine-CD36 receptor interaction and induced by ionizing radiation.

PLoS One

January 2025

Division of Cell- and Neurobiology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.

Emerging evidence suggests that fusion of cancer cells with leucocytes, such as macrophages, plays a significant role in cancer metastasis and results in tumor hybrid cells that acquire resistance to chemo- and radiation therapy. However, the precise mechanisms behind the leukocyte-cancer cell fusion remain unclear. The present in vitro study explores the presence of fusion between the monocyte cell line (THP-1) and the breast cancer cell line (MCF-7) in relation to the expression of CD36 and phosphatidylserine with and without treatment of these cells with ionizing radiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!