Light is an important environmental factor. Plants adapt to their light environment by developing the optimal phenotypes. Light-mediated hypocotyl growth is an ideal phenotype for studying how plants respond to light. Thus far, many signaling components in light-mediated hypocotyl growth have been reported. Here, we focused on identifying the transcription factors (TFs) involved in blue light-mediated hypocotyl growth. We analyzed the blue-light-mediated hypocotyl lengths of Arabidopsis TF-overexpressing lines and identified three NF-YC proteins, NF-YC7, NF-YC5, and NF-YC8 (NF-YCs being the short name), as the negative regulators in blue light-inhibited hypocotyl elongation. NF-YC-overexpressing lines developed longer hypocotyls than those of the wild type under blue light, while the deficient mutants -- and -- failed to exhibit hypocotyl elongation under blue light. NF-YCs physically interacted with CRY2 (cryptochrome 2) and PIF4/5 (phytochrome interacting factor 4 or 5), while the NF-YCs-PIF4/5 interactions were repressed by CRY2. Moreover, the overexpression of CRY2 or deficiency of PIF4/5 repressed NF-YC7-induced hypocotyl elongation under blue light. Further investigation revealed that NF-YC7 may increase CRY2 degradation and regulate PIF4/5 activities under blue light. Taken together, this study will provide new insight into the mechanism of how blue light inhibits hypocotyl elongation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419918 | PMC |
http://dx.doi.org/10.3390/ijms241512444 | DOI Listing |
Plant Cell
December 2024
Department of Plant and Microbial Biology, University of Minnesota at Twin Cities, Saint Paul, MN 55108, USA.
In Arabidopsis (Arabidopsis thaliana), light and circadian clock signaling converge on PHYTOCHROME-INTERACTING FACTORS (PIFs) 4 and 5 to produce a daily rhythm of hypocotyl elongation. PIF4 and PIF5 expression is repressed at dusk by the evening complex (EC), consisting of EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO (LUX). Here, we report that ELF3 recruits the JUMONJI (JMJ) H3K4me3 demethylases JMJ17 and JMJ18 to the PIF4 and PIF5 loci in the evening to remove their H3K4me3 marks.
View Article and Find Full Text PDFPlant Physiol
January 2025
College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.
View Article and Find Full Text PDFPlant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFGenes Genet Syst
January 2025
Faculty of Science, Hokkaido University.
In our study, we aimed to identify new mutants resulting from ONSEN transposition in Arabidopsis thaliana by subjecting nrpd1 mutants to heat stress. We isolated a mutant with a significantly elongated hypocotyl, named "Long hypocotyl in ONSEN inserted line 1" (HYO1). This phenotype was heritable, with progeny consistently displaying longer hypocotyls than the wild type.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, San Juan, San Juan 5400, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, San Juan 5427, Argentina. Electronic address:
Seeds of four native species of trees and shrubs (Larrea cuneifolia, Bulnesia retama, Plectrocarpa tetracantha and Prosopis flexuosa) were exposed to soil contaminated with As, Cu, Cd, and Zn from an abandoned gold mine to identify adaptation strategies. Several physiological, morpho-anatomical, and biochemical parameters were determined. The seed germination of L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!