Application of 2D NMR Spectroscopy in Combination with Chemometric Tools for Classification of Natural Lignins.

Int J Mol Sci

Laboratory of Natural Compounds Chemistry and Bioanalytics, Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia.

Published: August 2023

Lignin is considered a promising renewable source of valuable chemical compounds and a feedstock for the production of various materials. Its suitability for certain directions of processing is determined by the chemical structure of its macromolecules. Its formation depends on botanical origin, isolation procedure and other factors. Due to the complexity of the chemical composition, revealing the structural differences between lignins of various origins is a challenging task and requires the use of the most informative methods for obtaining and processing data. In the present study, a combination of two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy and multivariate analysis of heteronuclear single quantum coherence (HSQC) spectra is proposed. Principal component analysis and hierarchical cluster analysis techniques demonstrated the possibility to effectively classify lignins at the level of belonging to classes and families of plants, and in some cases individual species, with an error rate for data classification of 2.3%. The reverse transformation of loading plots into the corresponding HSQC loading spectra allowed for structural information to be obtained about the latent components of lignins and their structural fragments (biomarkers) responsible for certain differences. As a result of the analysis of 34 coniferous, deciduous, and herbaceous lignins, 10 groups of key substructures were established. In addition to syringyl, guaiacyl, and -hydroxyphenyl monomeric units, they include various terminal substructures: dihydroconiferyl alcohol, balanopholin, cinnamic acids, and tricin. It was shown that, in some cases, the substructures formed during the partial destruction of biopolymer macromolecules also have a significant effect on the classification of lignins of various origins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419134PMC
http://dx.doi.org/10.3390/ijms241512403DOI Listing

Publication Analysis

Top Keywords

nmr spectroscopy
8
lignins origins
8
lignins
6
application nmr
4
spectroscopy combination
4
combination chemometric
4
chemometric tools
4
tools classification
4
classification natural
4
natural lignins
4

Similar Publications

Differently substituted pyrrole-azo‑benzene molecular photoswitches were prepared in a straightforward synthetic way. Their fundamental properties were investigated by XRD analysis, differential scanning calorimetry, thermogravimetric analysis, cyclic voltammetry, UV‑Vis absorption spectroscopy, Hyper-Rayleigh Scattering, and NMR spectroscopy; the experimental results were further corroborated by DFT calculations. Thermal robustness, the HOMO/LUMO levels, and the absorption properties were altered mostly by substituting the N‑methylpyrrole moiety and further fine-tuned by modifying the benzene substituents.

View Article and Find Full Text PDF

Highly Efficient Analysis on Biomass Carbohydrate Mixtures by DREAMTIME NMR Spectroscopy.

Anal Chem

December 2024

Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Siming South Road 422, Xiamen 361005, China.

Proton (H) NMR spectroscopy presents a powerful tool for biomass mixture studies by revealing the involved chemical compounds with identified ingredients and molecular structures. However, conventional H NMR generally suffers from spectral congestion when measuring biomass mixtures, particularly biomass carbohydrate samples, that contain various physically and chemically similar compounds. In this study, a targeted detection NMR approach, DREAMTIME, is exploited for studying biomass carbohydrate mixtures by spectroscopically targeting the desired compounds in separate 1D NMR spectra.

View Article and Find Full Text PDF

Background: The clinical characteristics of major depressive disorder (MDD) in adolescents show notable gender-related differences, but the cause of these differences is still not understood. The current research concentrates on the changes in neurometabolism and neuroendocrine function, aiming to identify differences in endocrine function and brain metabolism between male and female adolescents with MDD.

Methods: A total of 121 teenagers diagnosed with MDD (43 males and 78 females) were enlisted as participants.

View Article and Find Full Text PDF

In this study, an integrated approach combining UHPLC-HRMS, H NMR spectroscopy, and sensory analysis unveiled the unique lipid fingerprint of long-ripened Protected Designation of Origin (PDO) Coppa Piacentina. Lipidomic profiling revealed significant alterations in lipid classes, including triacylglycerols, sphingolipids, and their oxidation products, which likely contribute to the distinctive flavor, texture, and nutritional properties of this traditional Italian product. UHPLC-HRMS analysis identified various lipid species, highlighting dynamic changes occurring throughout the 240-day ripening process.

View Article and Find Full Text PDF

Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!