In patients with chronic kidney disease, the need for examinations using contrast media (CM) increases because of underlying diseases. Although contrast agents can affect brain cells, the blood-brain barrier (BBB) protects against brain-cell damage in vivo. However, uremia can disrupt the BBB, increasing the possibility of contrast-agent-induced brain-cell damage in patients with chronic kidney disease (CKD). ω-3 polyunsaturated fatty acids (PUFAs) have shown protective effects on various neurological disorders, including uremic brain injury. This study examined whether ω-3 PUFAs attenuate damage to the BBB caused by uremia and contrast agents in a uremic mouse model and evaluated its associated mechanisms. C57BL/6 mice (eight weeks old, male) and fat-1 mice (b6 background/eight weeks old, male) were divided into groups according to uremic induction, CM, and ω-3 PUFA administration. Uremia was induced via 24 h ischemia-reperfusion (IR) renal injury. One day after CM treatment, the brain tissue, kidney tissue, and blood were collected. The expression levels of glial fibrillary acidic protein (GFAP), claudin 5, CD31, laminin α4, and laminin α5 increased in ω-3 PUFA + CM-treated uremic mice and the brain of fat-1 + CM-treated uremic mice compared with those in the brains of CM-treated uremic mice. The pro-apoptotic protein expression decreased, whereas the anti-apoptotic proteins increased in ω-3 PUFA + CM-treated uremic mice and fat-1 + CM-treated uremic mice compared with CM-treated uremic mice. In addition, the brain-expression levels of p-JNK, p-P53, and p-P38 decreased in the ω-3 PUFA + CM-treated uremic mice and fat-1 + CM-treated uremic mice compared with those in wild-type uremic mice. Our results confirm that uremic toxin and CM damage the BBB and cause brain-cell death. ω-3 PUFAs play a role in BBB protection caused by CM in uremic mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418677PMC
http://dx.doi.org/10.3390/ijms241512168DOI Listing

Publication Analysis

Top Keywords

uremic mice
44
cm-treated uremic
32
ω-3 pufa
16
uremic
15
mice
13
pufa cm-treated
12
fat-1 cm-treated
12
mice compared
12
ω-3
8
ω-3 polyunsaturated
8

Similar Publications

-Cresol, an environmental contaminant and endogenous metabolite derived primarily from the conversion of l-tyrosine by intestinal microflora, is gaining increasing attention, due to its potential impact on human health. Recent studies have highlighted elevated levels of -cresol and its metabolites, including -cresyl sulfate and -cresyl glucuronide, in various populations, suggesting a correlation with neurodevelopmental and neurodegenerative conditions. While the role of this compound as a uremic toxin is well established, its presence and concentration within the central nervous system (CNS) remain largely unexplored.

View Article and Find Full Text PDF

[Molecular mechanism of Xinyang Tablets in improving myocardial fibrosis in uremic cardiomyopathy based on single-cell sequencing technology].

Zhongguo Zhong Yao Za Zhi

December 2024

State Key Laboratory of Traditional Chinese Medicine Syndrome, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Geriatrics Department, the First Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou 510407, China Lingnan Medical Research Center, Guangzhou University of Chinese Medicine Guangzhou 510405, China Guangdong Clinical Research Institute of Chinese Medicine Guangzhou 510407, China.

This study aimed to investigate the ameliorative effect of Xinyang Tablets on myocardial fibrosis in uremic cardiomyopathy(UCM) using single-cell sequencing technology. UCM mouse models were established by 5/6 nephrectomy(NPM) and randomly divided into the model group, Xinyang Tablets group, and sham-operated(sham) group as the control. The Xinyang Tablets group received postoperative interventions of Xinyang Tablets(0.

View Article and Find Full Text PDF

A Mutant Complement Factor H (W1183R) Enhances Proteolytic Cleavage of von Willebrand Factor by ADAMTS13 Under Shear.

J Thromb Haemost

January 2025

Department of Pathology and Laboratory Medicine; Institute of Reproductive Medicine and Developmental Sciences, The University of Kansas Medical Center, Kansas City, KS 66160. Electronic address:

Background: A loss-of-functional mutation (W1183R) in human complement factor H (CFH) is associated with complement-associated hemolytic uremic syndrome; mice carrying a similar mutation (W1206R) in CFH also develop thrombotic microangiopathy but its plasma von Willebrand factor (VWF) multimer sizes were dramatically reduced. The mechanism underlying such a dramatic change in plasma VWF multimer distribution in these mice is not fully understood.

Objective And Methods: To determine the VWF and CFH interaction and how CFH proteins affect VWF multimer distribution, we employed recombinant protein expression, purification, and various biochemical and biophysical tools.

View Article and Find Full Text PDF

Rationale & Objective: Peritoneal dialysis (PD) solutions provide both clearance of uremic toxins and sodium and water. An intraperitoneal (IP) solution of icodextrin and glucose designed without the requirement for uremic toxin clearance could provide substantially greater sodium and water removal than PD solutions.

Study Design: We examined varying concentrations of icodextrin and dextrose IP solutions in rats.

View Article and Find Full Text PDF

OTUB2 contributes to vascular calcification in chronic kidney disease via the YAP-mediated transcription of PFKFB3.

Theranostics

January 2025

Department of Nephrology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China.

Chronic kidney disease (CKD) is a global public health issue, with vascular calcification (VC) being a common and deadly complication. Despite its prevalence, the underlying mechanisms of VC remain unclear. In this study, we aimed to investigate whether and how Otubain-2 (OTUB2) contributes to VC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!