The effective dipole moment model for molecules of axial C3v symmetry is derived on the basis of the symmetry properties of a molecule which, on the one hand, is of the same order of efficiency (but much simpler and clearer in applications) as the analogous models derived on the basis of the irreducible tensorial sets theory, and, on the other hand, mathematically more correct in comparison with concepts like the Herman-Walles function used in the models. As an application of the general results obtained, we discuss high-resolution infrared spectra of CH335Cl, recorded with the Zürich prototype ZP2001 (Bruker IFS125 HR) Fourier transform infrared spectrometer at a resolution of 0.001 cm-1 and analyzed in the region of 880-1190 cm-1 (ν6 bending fundamental centered at ν0 = 1018.070790 cm-1). Absolute strengths of more than 2800 transitions (2081 lines) were obtained from the fit of their shapes both with Voigt and Hartmann-Tran profiles, and parameters of the effective dipole moment of the ν6 band were determined by the computer code SYMTOMLIST (SYMmetric TOp Molecules: LIne STrengths), created on the basis of a derived theoretical model. As the first step of the analysis of the experimental data, assignments of the recorded lines were made. A total of 5124 transitions with Jmax = 68, Kmax = 21 were assigned to the ν6 band. The weighted fit of 2077 upper energy values obtained from the experimentally recorded transitions was made with a Hamiltonian which takes into account different types of ro-vibrational effects in doubly degenerate vibrational states of the C3v-symmetric molecule. As the result, a set of 25 fitted parameters was obtained which reproduces the initial 2077 upper "experimental" ro-vibrational energy values with a root mean square deviation drms=4.7×10-5 cm-1. At the second step of the analysis, the computer code SYMTOMLIST was used for determination of the parameters of the derived effective dipole moment model. Six effective dipole moment parameters were obtained from the weighted fit procedure which reproduces absolute experimental strengths of the 2804 initial experimental transitions with a relative drms=3.4%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418978PMC
http://dx.doi.org/10.3390/ijms241512122DOI Listing

Publication Analysis

Top Keywords

effective dipole
20
dipole moment
20
moment model
12
absolute strengths
8
derived basis
8
ν6 band
8
computer code
8
code symtomlist
8
step analysis
8
weighted fit
8

Similar Publications

This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.

View Article and Find Full Text PDF

The dielectric behavior of Asparagine (CHNO) in water over the frequency range of 10 MHz to 30 GHz in the temperature region of 278.15-303.15 K in a step of 5 K has been carried out using time domain reflectometry (TDR) at various concentrations of asparagine.

View Article and Find Full Text PDF

A green method on dipole solvent as "Activators": γ-valerolactone/HO system promoted degradation of ciprofloxacin by ferrate(Ⅵ).

Water Res

December 2024

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.

This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.

View Article and Find Full Text PDF

Natural terpenes II. Concentration-dependent profile of effects on dynamic organization of biological and model membranes.

Biochem Biophys Res Commun

December 2024

Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento de Química, Cátedra de Química Biológica, Córdoba, Argentina; CONICET, Instituto de Investigaciones Biológicas y Tecnológicas (IIByT). Córdoba, Argentina. Electronic address:

Monoterpenes (MTs), the major constituents of plant essential oils, cover a broad spectrum of biological activities through their interaction with biomembranes. MTs are highly hydrophobic substances with a net electrical dipole, but are not clearly amphipathic. As a result, they aggregate at increasing concentrations in aqueous media, and in membrane environments their behavior changes from dynamics modulators to disruptors.

View Article and Find Full Text PDF

Spectroscopy and Dynamics of the Dipole-Bound States of -, -, and -Methylphenolate Anions.

J Phys Chem A

December 2024

Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea.

A photodetachment and photoelectron spectroscopic study by employing a cryogenically cooled ion trap combined with a velocity-map imaging setup has been carried out to unravel the vibrational structures and autodetachment dynamics of the dipole-bound states (DBSs) of -, -, and -methylphenolate anions (-, -, and -CHPhO). The electron binding energy of the DBS increases monotonically with the increase of the neutral dipole moment to give respective values of 66 ± 15, 123 ± 18, or 154 ± 14 cm for the -, -, or -isomer. The different electron-donating effects of the methyl moieties in the three geometrically different isomers seem to be reflected in the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!