Neuroblastoma is the most common tumour in children under 1 year old, accounting for 12-15% of childhood cancer deaths. Although current treatments are relatively efficacious against this cancer, associated adverse effects could be detrimental to growth and development. In contrast, glioblastoma accounts for 52% of brain tumours and has an extremely poor prognosis. Current chemotherapeutics include temozolomide, which has numerous negative side-effects and a low-effective rate. Previous studies have shown the manipulation of autophagy to be a promising method for targeting cancers, including glioblastoma. We sought to determine the effects of autophagic alterations in combination with current chemotherapies in both neuroblastoma and glioblastoma. Supplementing cisplatin or temozolomide with autophagy activator rapamycin stabilized cancer cell mitochondria, despite having little effect on apoptosis or oxidative stress. Autophagy inhibition via 3-methyladenine or hydroxychloroquine alongside standard chemotherapies enhanced apoptosis and oxidative stress, with 3-methyladenine also disrupting mitochondrial health. Importantly, combining hydroxychloroquine with 0.5 µM cisplatin or 50 µg/mL temozolomide was as or more effective than 2 µM cisplatin or 100 µg/mL temozolomide alone. Analyzing these interesting results, a combined treatment of autophagy inhibitor with a standard chemotherapeutic agent could help to improve patient prognosis and reduce chemotherapy doses and their associated side-effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10418453PMC
http://dx.doi.org/10.3390/ijms241512052DOI Listing

Publication Analysis

Top Keywords

autophagy inhibition
8
apoptosis oxidative
8
oxidative stress
8
µm cisplatin
8
µg/ml temozolomide
8
autophagy
5
inhibition hydroxychloroquine
4
hydroxychloroquine 3-methyladenine
4
3-methyladenine enhances
4
enhances chemotherapy-induced
4

Similar Publications

The death of osteoblasts induced by glucocorticoid (GC)-mediated oxidative stress plays a crucial role in the development of steroid-induced osteonecrosis of the femoral head (SIONFH). Improving bone formation driven by osteoblasts has shown promising outcomes in the prognosis of SIONFH. Isovitexin has demonstrated antioxidant properties, but its therapeutic effects on GC-induced oxidative stress and SIONFH remain unexplored.

View Article and Find Full Text PDF

Inhibition of Neutral Sphingomyelinase-2 restrains Enterovirus 71 Infection by Autophagy.

Microb Pathog

January 2025

Department of Laboratory Medicine, Suzhou Mental Health Center, the Affiliated Guangji Hospital of Soochow University, Suzhou215137, Jiangsu, China.

Enterovirus 71 (EV-71) is a major pathogenic factor that causes hand, foot, and mouth disease in young children and infants. Given the limited treatments for EV-71 infection, discovering new host factors and understanding the mechanisms involved will aid in combating this viral infection. Neutral sphingomyelinase-2 (nSMase-2, encoded by SMPD3) is a crucial cellular cofactor in viral infection.

View Article and Find Full Text PDF

Autophagy-Targeted Therapy for Pulmonary Inflammation by 2D MX (M = W, Nb; X = S, Se) Nanosheets.

Acta Biomater

January 2025

Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; School of Public Health, Tianjin Medical University, Tianjin 300070, China. Electronic address:

For biomedical applications, two-dimensional transition metal dichalcogenides (2D TMDCs) are often combined with other elements or functionalized with specific surface ligands, while their intrinsic biological activities are not yet fully understood. This study investigates the anti-inflammatory potential of four unmodified 2D TMDCs, including WS, WSe, NbS, and NbSe nanosheets, in LPS-activated MH-S cells in vitro and in a mouse model of pulmonary inflammation in vivo. Despite their varying compositions, these 2D TMDCs exhibited comparable anti-inflammatory effects in LPS-activated MH-S cells.

View Article and Find Full Text PDF

FOXS1, frequently inactivated by promoter methylation, inhibited colorectal cancer cell growth by promoting TGFBI degradation through autophagy-lysosome pathway.

J Adv Res

January 2025

Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:

Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.

Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.

View Article and Find Full Text PDF

The Effect of Resveratrol on Lead-Induced Oxidative Damage and Apoptosis in HT-22 Cells.

Food Chem Toxicol

January 2025

Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, Guangxi 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China. Electronic address:

Objective: The purpose of this work was to investigate whether resveratrol affects lead-induced oxidative damage in HT-22 cells, characterizing mechanisms and strategies for preventing and treating lead-induced neurotoxicity.

Methods: Various lead and resveratrol concentrations were applied to HT-22 cells over different time periods. First, we established the lead treatment (12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!