While shade and air flow are recognised factors that reduce outdoor heat exposure, the level of reduction in terms of labour capacity at varying air temperature and humidity levels is poorly understood. This study investigated cooling effects on the commonly used heat index, wet bulb globe temperature (WBGT), and subsequent impact on labour capacity, for a range of air flow and shade conditions in warm to hot climates. We modelled heat exposure using a physics-based method to map WBGT for a case study region which experiences a range of heat categories with varying levels of health risks for outdoor workers. Continent-scale modelling confirmed significant spatial variability in the effect of various shade and wind speed scenarios across a range of real-world mid-summer daytime conditions. At high WBGTs, increasing shade or air flow for outdoor workers lowered heat exposure and increases labour capacity, with shade giving the greatest benefit, but cooling varied considerably depending upon underlying air temperature and humidity. Shade had the greater cooling effect; reducing incident radiation by 90% decreased WBGT by 2-6 °C depending on location. Wind had a lower cooling effect in the hottest regions, with a decreasing exponential relationship between wind speed and WBGT observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419035PMC
http://dx.doi.org/10.3390/ijerph20156531DOI Listing

Publication Analysis

Top Keywords

labour capacity
16
air flow
12
heat exposure
12
wet bulb
8
bulb globe
8
globe temperature
8
warm hot
8
hot climates
8
shade air
8
air temperature
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!