Machine Learning in Antibody Diagnostics for Inflammatory Bowel Disease Subtype Classification.

Diagnostics (Basel)

Department of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland.

Published: July 2023

Antibody testing in inflammatory bowel disease (IBD) can add to diagnostic accuracy of the main subtypes Crohn's disease (CD) and ulcerative colitis (UC). Whether modern modeling techniques such as supervised and unsupervised machine learning are of value for finer distinction of subtypes such as IBD-unclassified (IBD-U) is not known. We determined the antibody profile of 100 adult IBD patients from the Swiss IBD cohort study with known subtype (50 CD, 50 UC) as well as of 76 IBD-U patients. We included ASCA IgG and IgA, p-ANCA, MPO- and PR3-ANCA, and xANCA measurements for computing different antibody panels as well as machine learning models. The AUC of an optimized antibody panel was 85% (95%CI, 78-92%) to distinguish CD from UC patients. The antibody profile of IBD-U patients was closely related to UC. No specific antibody profile was predictive for IBD-U nor for re-classification. The panel diagnostic was in favor of UC reclassification prediction with a correct assignment rate of 69.2-73.1% depending on the cut-off applied. Supervised machine learning could not distinguish between CD, UC, and IBD-U. More so, unsupervised machine learning suggested only two distinct clusters as a likely number of IBD subtypes. Antibodies in IBD are supportive in confirming clinical determined subtypes CD and UC but have limited capacity to predict IBD-U and reclassification during follow-up. In terms of antibody profiles, IBD-U is not a distinct subtype of IBD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417520PMC
http://dx.doi.org/10.3390/diagnostics13152491DOI Listing

Publication Analysis

Top Keywords

machine learning
20
antibody profile
12
antibody
8
inflammatory bowel
8
bowel disease
8
unsupervised machine
8
ibd-u patients
8
ibd-u
7
ibd
6
machine
5

Similar Publications

Developing high-precision models of the nuclear force and propagating the associated uncertainties in quantum many-body calculations of nuclei and nuclear matter remain key challenges for ab initio nuclear theory. In this Letter, we demonstrate that generative machine learning models can construct novel instances of the nucleon-nucleon interaction when trained on existing potentials from the literature. In particular, we train the generative model on nucleon-nucleon potentials derived at second and third order in chiral effective field theory and at three different choices of the resolution scale.

View Article and Find Full Text PDF

Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.

Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) have demonstrated promise in the treatment of various cancers. Single-drug ICI therapy (immuno-oncology [IO] monotherapy) that targets PD-L1 is the standard of care in patients with advanced non-small cell lung cancer (NSCLC) with PD-L1 expression ≥50%. We sought to find out if a machine learning (ML) algorithm can perform better as a predictive biomarker than PD-L1 alone.

View Article and Find Full Text PDF

Addressing the global challenge of ensuring access to safe drinking water, especially in developing countries, demands cost-effective, eco-friendly, and readily available technologies. The persistence, toxicity, and bioaccumulation potential of organic pollutants arising from various human activities pose substantial hurdles. While high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) is a widely utilized technique for identifying pollutants in water, the multitude of structures for a single elemental composition complicates structural identification.

View Article and Find Full Text PDF

Object detection in motion management scenarios based on deep learning.

PLoS One

January 2025

School of Physical Education, Jinjiang College, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.

In athletes' competitions and daily training, in order to further strengthen the athletes' sports level, it is usually necessary to analyze the athletes' sports actions at a specific moment, in which it is especially important to quickly and accurately identify the categories and positions of the athletes, sports equipment, field boundaries and other targets in the sports scene. However, the existing detection methods failed to achieve better detection results, and the analysis found that the reasons for this phenomenon mainly lie in the loss of temporal information, multi-targeting, target overlap, and coupling of regression and classification tasks, which makes it more difficult for these network models to adapt to the detection task in this scenario. Based on this, we propose for the first time a supervised object detection method for scenarios in the field of motion management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!