Multiple myeloma (MM) frequently induces persisting osteolytic manifestations despite hematologic treatment response. This study aimed to establish a biometrically valid study endpoint for bone remineralization through quantitative and qualitative analyses in sequential CT scans. Twenty patients (seven women, 58 ± 8 years) with newly diagnosed MM received standardized induction therapy comprising the anti-SLAMF7 antibody elotuzumab, carfilzomib, lenalidomide, and dexamethasone (E-KRd). All patients underwent whole-body low-dose CT scans before and after six cycles of E-KRd. Two radiologists independently recorded osteolytic lesion sizes, as well as the presence of cortical destruction, pathologic fractures, rim and trabecular sclerosis. Bland-Altman analyses and Krippendorff's α were employed to assess inter-reader reliability, which was high for lesion size measurement (standard error 1.2 mm) and all qualitative criteria assessed (α ≥ 0.74). After six cycles of E-KRd induction, osteolytic lesion size decreased by 22% ( < 0.001). While lesion size response did not correlate with the initial lesion size at baseline imaging (Pearson's r = 0.144), logistic regression analysis revealed that the majority of responding osteolyses exhibited trabecular sclerosis ( < 0.001). The sum of osteolytic lesion sizes on sequential CT scans defines a reliable study endpoint to characterize bone remineralization. Patient level response is strongly associated with the presence of trabecular sclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417114PMC
http://dx.doi.org/10.3390/cancers15154008DOI Listing

Publication Analysis

Top Keywords

lesion size
20
osteolytic lesion
16
sequential scans
12
study endpoint
12
bone remineralization
12
trabecular sclerosis
12
reliable study
8
endpoint bone
8
newly diagnosed
8
multiple myeloma
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!