P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a new class of small noncoding RNAs (ncRNAs) that bind components of the PIWI protein family. piRNAs are specifically expressed in different human tissues and regulate important signaling pathways. Aberrant expressions of piRNAs and PIWI proteins have been associated with tumorigenesis and cancer progression. Recent studies reported that piRNAs are contained in extracellular vesicles (EVs), nanosized lipid particles, with key roles in cell-cell communication. EVs contain several bioactive molecules, such as proteins, lipids, and nucleic acids, including emerging ncRNAs. EVs are one of the components of liquid biopsy (LB) a non-invasive method for detecting specific molecular biomarkers in liquid samples. LB could become a crucial tool for cancer diagnosis with piRNAs as biomarkers in a precision oncology approach. This review summarizes the current findings on the roles of piRNAs in different cancer types, focusing on potential theranostic applications of piRNAs contained in EVs (EV-piRNAs). Their roles as non-invasive diagnostic and prognostic biomarkers and as new therapeutic options have been also discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417041 | PMC |
http://dx.doi.org/10.3390/cancers15153912 | DOI Listing |
PLoS One
January 2025
Information School, The Wave, The University of Sheffield, Sheffield, United Kingdom.
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate the expression level of the target genes in the cell. Breast cancer is responsible for the majority of cancer-related deaths among women globally. It has been proven that deregulated miRNAs may play an essential role in the progression of breast cancer.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD), the most common type of dementia, affects at least twenty-four million people globally, yet, the causation, mechanisms of progression, and therapeutic strategies remain elusive. Currently, tRNA-derived RNA fragments (tRFs), a family of recently discovered small non-coding RNAs (sncRNAs), have surfaced as promising biomarkers for many diseases, including AD. Our work revealed that several AD-impacted tRFs in human hippocampus, CSF, and serum.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston Salem, NC, USA.
Background: Central nervous system (CNS) dysregulated insulin and peripheral hyperinsulinemia has been associated with AD. However, analyzing CNS insulin resistance in living subjects and its implication on cognitive impairment/ AD is difficult to establish due to inaccessibility of brain tissue. In this study we isolated and characterized plasma neuron-derived small extracellular vesicles (NDE), and adopted multi-omics approaches to discover novel biomarkers of AD and CNS insulin resistance and suggested their possible association.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of thoracic and cardiovascular surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai, China.
Background: Pulmonary ischemia-reperfusion injury (PIRI) is a major cause of fatality post-lung transplantation. Though some long non-coding RNAs (lncRNAs) have been studied in acute lung injury (ALI), their effects on PIRI remain undefined. The present study aims to explore the underlying mechanism of small nucleolar RNA host gene 16 (SNHG16) in PIRI.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Texas A&M University Health, Bryan, TX, USA.
Background: Our studies show that the small non-coding RNA, mir20a-3p, is neuroprotective for stroke in the acute phase and also attenuates long term cognitive decline in middle-aged female rats. Cognitive decline due to vascular diseases, such as stroke, is associated with secondary neurodegeneration in cortex and limbic structures. In this study, we assessed the volume of white matter, ventricles and regional diffusion-weighted MR imaging measures to delineate pathological tissue characteristics from the postmortem brain of stroke rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!