Radiomics and Machine Learning in Brain Tumors and Their Habitat: A Systematic Review.

Cancers (Basel)

Centre for Health Informatics, Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia.

Published: July 2023

Radiomics is a rapidly evolving field that involves extracting and analysing quantitative features from medical images, such as computed tomography or magnetic resonance images. Radiomics has shown promise in brain tumor diagnosis and patient-prognosis prediction by providing more detailed and objective information about tumors' features than can be obtained from the visual inspection of the images alone. Radiomics data can be analyzed to determine their correlation with a tumor's genetic status and grade, as well as in the assessment of its recurrence vs. therapeutic response, among other features. In consideration of the multi-parametric and high-dimensional space of features extracted by radiomics, machine learning can further improve tumor diagnosis, treatment response, and patients' prognoses. There is a growing recognition that tumors and their microenvironments (habitats) mutually influence each other-tumor cells can alter the microenvironment to increase their growth and survival. At the same time, habitats can also influence the behavior of tumor cells. In this systematic review, we investigate the current limitations and future developments in radiomics and machine learning in analysing brain tumors and their habitats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417709PMC
http://dx.doi.org/10.3390/cancers15153845DOI Listing

Publication Analysis

Top Keywords

radiomics machine
12
machine learning
12
brain tumors
8
systematic review
8
images radiomics
8
tumor diagnosis
8
radiomics
6
learning brain
4
tumors habitat
4
habitat systematic
4

Similar Publications

Purpose: This study aimed to develop and validate a model for accurately assessing the risk of distant metastases in patients with gastric cancer (GC).

Methods: A total of 301 patients (training cohort, n = 210; testing cohort, n = 91) with GC were retrospectively collected. Relevant clinical predictors were determined through the application of univariate and multivariate logistic regression analyses.

View Article and Find Full Text PDF

Predicting axillary lymph node metastasis in breast cancer using a multimodal radiomics and deep learning model.

Front Immunol

December 2024

Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China.

Objective: To explore the value of combined radiomics and deep learning models using different machine learning algorithms based on mammography (MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node metastasis (ALNM) in breast cancer (BC). The objective is to provide guidance for developing scientifically individualized treatment plans, assessing prognosis, and planning preoperative interventions.

Methods: A retrospective analysis was conducted on clinical and imaging data from 270 patients with BC confirmed by surgical pathology at the Third Hospital of Shanxi Medical University between November 2022 and April 2024.

View Article and Find Full Text PDF

Objective: Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning model based on MRI radiomics data.

Methods: This retrospective study included 235 patients with confirmed solitary BM and 273 patients with GBM.

View Article and Find Full Text PDF

Development and Validation of a Nomogram Based on Multiparametric MRI for Predicting Lymph Node Metastasis in Endometrial Cancer: A Retrospective Cohort Study.

Acad Radiol

December 2024

Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China (Y.T., Y.W., Y.Y., X.Q., Y.H., J.L.); Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning 530021, Guangxi Zhuang Autonomous Region, PR China (J.L.). Electronic address:

Rationale And Objectives: To develop a radiomics nomogram based on clinical and magnetic resonance features to predict lymph node metastasis (LNM) in endometrial cancer (EC).

Materials And Methods: We retrospectively collected 308 patients with endometrial cancer (EC) from two centers. These patients were divided into a training set (n=155), a test set (n=67), and an external validation set (n=86).

View Article and Find Full Text PDF

Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review.

BMC Cancer

December 2024

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain cancer in humans. The median survival time of GBM patients is only 12-15 months, making it the most lethal type of brain tumor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!