Until recently, despite its heterogenous biology, metastatic triple negative breast cancer (TNBC) was treated as a single entity, with successive lines of palliative chemotherapy being the only systemic option. Significant gene expression studies have demonstrated the diversity of TNBC, but effective differential targeting of the four main (Basal-like 1 and 2, mesenchymal and luminal androgen receptor) molecular sub-types has largely eluded researchers. The introduction of immunotherapy, currently useful only for patients with PD-L1 positive cancers, led to the stratification of first-line therapy using this immunohistochemical biomarker. Germline gene mutations can also be targeted with PARP inhibitors in both the adjuvant and metastatic settings. In contrast, the benefit of the anti-Trop-2 antibody-drug conjugate (ADC) Sacituzumab govitecan (SG) does not appear confined to patients with tumours expressing high levels of Trop-2, leading to its potential utility for any patient with an estrogen receptor (ER)-negative, HER2-negative advanced breast cancer (ABC). Most recently, low levels of HER2 expression, detected in up to 60% of TNBC, predicts benefit from the potent HER2-directed antibody-drug conjugate trastuzumab deruxtecan (T-DXd), defining an additional treatment option for this sub-group. Regrettably, despite recent advances, the median survival of TNBC continues to lag far behind the approximately 5 years now expected for patients with ER-positive or HER2-positive breast cancers. We review the data supporting immunotherapy, ADCs, and targeted agents in subgroups of patients with TNBC, and current clinical trials that may pave the way to further advances in this challenging disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10417818 | PMC |
http://dx.doi.org/10.3390/cancers15153801 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jazan University, P.O. Box 114 (Postal Code: 45142), Jazan, Kingdom of Saudi Arabia.
Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.
Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.
Adv Mater
January 2025
Department of Mechanical and Aerospace Engineering, Program of Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues.
View Article and Find Full Text PDFSmall
January 2025
College of Osteopathic Medicine, Liberty University, Lynchburg, VA, 24502, USA.
Using a combined top-down (i.e., operator-directed) and bottom-up (i.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Clinical Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia.
Background: Cancer cases in the Kingdom of Saudi Arabia (KSA) have tripled in recent years. Quality of Life (QoL) measurements are crucial for healthcare professionals because they reveal important information about how patients respond to drugs and their general health. This study aimed to collect and summarise articles exploring the QoL of patients undergoing oncology treatments in KSA.
View Article and Find Full Text PDFMater Today Bio
February 2025
Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, PR China.
Cell membrane targeting sonodynamic therapy could induce the accumulation of lipid peroxidation (LPO), drive ferroptosis, and further enhances immunogenic cell death (ICD) effects. However, ferroptosis is restrained by the ferroptosis suppressor protein 1 (FSP1) at the plasma membrane, which can catalyze the regeneration of ubiquinone (CoQ10) by using NAD(P)H to suppress the LPO accumulation. This work describes the construction of US-active nanoparticles (TiF NPs), which combinate cell-membrane targeting sonosensitizer TBT-CQi with FSP1 inhibitor (iFSP1), facilitating cell-membrane targeting sonodynamic-triggered ferroptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!