Magnetic resonance imaging (MRI) of the chest is becoming more available in the detection and monitoring of early changes in lung function and structure in patients with cystic fibrosis (CF). The aim of this study was to assess the relationship between pulmonary function tests (PFT) and perfusion deficits in CF children measured by MRI. We performed a retrospective analysis of the perfusion lung MRI scans and the results of spirometry, oscillometry, body plethysmography, single-breath carbon monoxide uptake, and multiple-breath washout technique (MBW). There were statistically significant correlations between the MRI perfusion scores and MBW parameters (2.5% LCI, M1/M0, M2/M0), spirometry parameters (FEV, FVC, FEF25/75), reactance indices in impulse oscillometry (X5Hz, X10Hz), total lung capacity (TLC) measured in single breath carbon monoxide uptake, markers of air-trapping in body plethysmography (RV, RV/TLC), and the diffusing capacity of the lungs for carbon monoxide. We also observed significant differences in the aforementioned PFT variables between the patient groups divided based on perfusion scores. We noted a correlation between markers of functional lung deficits measured by the MRI and PFTs in CF children. MRI perfusion abnormalities were reflected sooner in the course of the disease than PFT abnormalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10419458PMC
http://dx.doi.org/10.3390/jcm12155136DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
12
pulmonary function
8
cystic fibrosis
8
measured mri
8
body plethysmography
8
monoxide uptake
8
mri perfusion
8
perfusion scores
8
mri
7
perfusion
5

Similar Publications

Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.

View Article and Find Full Text PDF

Modification of polylactic acid (PLA) is a promising strategy for the next generation of bioresorbable vascular stent biomaterials. With this focus, FeMOFs nanoparticles was incorporated in PLA, and then post loading of carbon monoxide (CO) was performed by pressurization. It showed FeMOFs incorporation increased hydrophilicity of the surface and CO loading, and CO release was sustained at least for 3 days.

View Article and Find Full Text PDF

Electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3-) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and Nrelated* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (Pd2Au1/RuO2).

View Article and Find Full Text PDF

Contingency management (CM), an evidence-based behavioral strategy that rewards positive behavior change including tobacco cessation, is rarely offered to support people with HIV (PWH) who smoke. In this study, we explored perspectives among patients and research staff engaged in a multi-site randomized clinical trial involving clinical pharmacist-delivered CM within HIV clinics. Between February and September 2023, we conducted 1:1 interviews with 12 PWH randomized to receive CM and one focus group with 8 staff (i.

View Article and Find Full Text PDF

Background: Severe respiratory complications following kidney transplantation have been reported, yet remain poorly understood in the pediatric population. This study aimed to document respiratory disease in this population.

Methods: At annual follow-ups, patients completed a respiratory symptoms questionnaire and underwent pulmonary function tests (PFTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!