In many forensic settings, identity of a DNA sample is sought from poor-quality DNA, for which the typical STR loci tabulated in forensic databases are not possible to reliably genotype. Genome-wide SNPs, however, can potentially be genotyped from such samples via next-generation sequencing, so that queries can in principle compare SNP genotypes from DNA samples of interest to STR genotype profiles that represent proposed matches. We use genetic record-matching to evaluate the possibility of testing SNP profiles obtained from poor-quality DNA samples to identify exact and relatedness matches to STR profiles. Using simulations based on whole-genome sequences, we show that in some settings, similar match accuracies to those seen with full coverage of the genome are obtained by genetic record-matching for SNP data that represent 5-10% genomic coverage. Thus, if even a fraction of random genomic SNPs can be genotyped by next-generation sequencing, then the potential may exist to test the resulting genotype profiles for matches to profiles consisting exclusively of nonoverlapping STR loci. The result has implications in relation to criminal justice, mass disasters, missing-person cases, studies of ancient DNA, and genomic privacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620386 | PMC |
http://dx.doi.org/10.1038/s41431-023-01430-9 | DOI Listing |
Pharmaceutics
January 2025
Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.
: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.
View Article and Find Full Text PDFPharmaceutics
December 2024
Pharmathen SA, 31 Spartis Str., 14452 Metamorfosi Attica, Greece.
Regulatory authorities typically require bioequivalence to be demonstrated by comparing pharmacokinetic parameters like area under the plasma concentration-time curve (AUC) and maximum plasma concentration (C). Because in certain cases, AUC and C alone may not be adequate to identify formulation differences in early and/or late segments of the dosing interval, partial AUCs (pAUCs) have been proposed as additional metrics to evaluate bioequivalence. Even though cut-off points for pAUCs are usually decided based on clinical relevance, the identification of the correct cut-off range remains elusive in many other cases and tends to contribute to increased pAUC estimate variabilities.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Pharmaceutical Chemistry, National University of Pharmacy, 61168 Kharkiv, Ukraine.
The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania.
The environmental impact of invasive species necessitates creating a strategy for managing their spread by utilising them as a source of potentially high-value raw materials. (Lam.) K.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
Celery () can be considered as a model plant for studying pectin-enriched primary cell walls. In addition to parenchyma cells with xyloglucan-deficient walls, celery petioles contain collenchyma, a mechanical tissue with thickened cell walls of similar composition. This study presents a comprehensive analysis of these tissues at both early and late developmental stages, integrating data on polysaccharide yield, composition, localization, and transcriptome analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!