Polyvinyl-alcohol, chitosan and graphene-oxide composed conductive hydrogel for electrically controlled fluorescein sodium transdermal release.

Carbohydr Polym

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

Published: November 2023

Accurate and controlled release of drug molecules is crucial for transdermal drug delivery. Electricity, as an adjustable parameter, offers the potential for precise and controllable drug delivery. However, challenges exist in selecting the appropriate drug carrier, electrical parameters, and release model to achieve controlled electronic drug release. To overcome these challenges, this study designed a functional hydrogel using polyvinyl alcohol, chitosan, and graphene oxide as components that can conduct electricity, and constructed a drug transdermal release model using fluorescein sodium salt with proper electrical parameters. The results demonstrated that the hydrogel system exhibited low cytotoxicity, good conductivity, and desirable drug delivery characteristics. The study also integrated the effects of drug release and tissue repair promotion under electrical stimulation. Cell growth was enhanced under low voltage direct current pulses, promoting cell migration and the release of VEGF and FGF. Furthermore, the permeability of fluorescein sodium salt in the hydrogel increased with direct current stimulation. These findings suggest that the carbohydrate polymers hydrogel could serve as a drug carrier for controlled release, and electrical stimulation offers new possibilities for functional drug delivery and transdermal therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121172DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
fluorescein sodium
12
drug
10
release
8
transdermal release
8
controlled release
8
drug carrier
8
electrical parameters
8
release model
8
drug release
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!