Stabilization of capsanthin in physically-connected hydrogels: Rheology property, self-recovering performance and syringe/screw-3D printing.

Carbohydr Polym

State Key Laboratory of Silkworm Genome Biology, College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, PR China; Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, PR China; Key Laboratory of Condiment Supervision Technology for State Market Regulation, Chongqing 400715, PR China. Electronic address:

Published: November 2023

This work presented a facile way of stabilizing capsanthin by physically-connected soft hydrogels via utilizing specially-structured polysaccharides, and investigated rheological properties, self-recovering mechanism and 3D printability. The functionalized hydrogels demonstrated excellent color quality including redness, yellowness index and hue with great storage stability and visual perception. The soft hydrogels fabricated with properly sequenced polyglyceryl fatty acid esters, β-cyclodextrin, chitosan, and low-content capsanthin possessed outstanding extrudability, appropriate yield stress, reasonable mechanical strength, rational elasticity and structure sustainability. Furthermore, the self-recovering properties based on hydrogen bonds, host-guest interactions and electrostatic interactions were revealed and verified by structural, zeta potential, micro-morphological, zeta potential, thixotropic, creep-recovery, and macroscopic/microscopic characterizations. Along with excellent antioxidant performance, the subsequent 3D printing onto bread with complex models elucidated the high geometry accuracy and great sensory characters. The sequenced physically-connected hydrogels incorporated with capsanthin can provide new insights on stabilizing hydrophobic biomaterials and developing the 3D printed exquisite, innovative food.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2023.121209DOI Listing

Publication Analysis

Top Keywords

capsanthin physically-connected
8
physically-connected hydrogels
8
soft hydrogels
8
zeta potential
8
hydrogels
5
stabilization capsanthin
4
hydrogels rheology
4
rheology property
4
property self-recovering
4
self-recovering performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!