Leuconostoc spp. is often regarded as the flavor producer, responsible for the production of acetoin and diacetyl in dairy cheese. In this study, we investigate seven plant-derived Leuconostoc strains, covering four species, in their potential as a lyophilized starter culture for flavor production in fermented soy-based cheese alternatives. We show that the process of lyophilization of Leuconostoc can be feasible using a soy-based lyoprotectant, with survivability up to 63% during long term storage. Furthermore, the storage in this media improves the subsequent growth in a soy-based substrate in a strain specific manner. The utilization of individual raffinose family oligosaccharides was strain dependent, with Leuconostoc pseudomesenteroides NFICC99 being the best consumer. Furthermore, we show that all investigated strains were able to produce a range of volatile flavor compounds found in dairy cheese products, as well as remove certain dairy off-flavors from the soy-based substrate like hexanal and 2-pentylfuran. Also here, NFICC99 was strain producing most cheese-related volatile flavor compounds, followed by Leuconostoc mesenteroides NFICC319. These findings provide initial insights into the development of Leuconostoc as a potential starter culture for plant-based dairy alternatives, as well as a promising approach for generation of stable, lyophilized cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fm.2023.104337 | DOI Listing |
J Dairy Res
January 2025
Facultad de Ingeniería Química (FIQ-UNL), Instituto de Lactología Industrial (CONICET), Santiago del Estero 2829, Santa Fe, Argentina.
We compared the effects of two waste-based culture media (M1 and M2) on the technological properties of (L90) for its application as a secondary culture in Cremoso cheese. The following parameters were studied at different ripening times: pH (7, 20, and 40 d), microbiological counts, carbohydrates and organic acids (7 and 40 d), moisture, fat, protein and volatile compounds (40 d). The viability and the metabolic performance of the strain in cheeses were also verified along ripening.
View Article and Find Full Text PDFFood Chem
January 2025
University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
The complexity of modern food supply chains limits the effectiveness of targeted approaches to address food traceability issues. Untargeted metabolomics provides a comprehensive profile of small molecules present within biological samples. In this study, the potential of ultra-high performance liquid chromatography-ion mobility-high resolution mass spectrometry (UHPLC-IMS-HRMS) to discriminate bovine milk samples collected at individual level was evaluated for traceability purposes.
View Article and Find Full Text PDFFoods
January 2025
Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
Microbial fermentation is a primary method by which a variety of foods and beverages are produced. The term refers to the use of microbes such as bacteria, yeasts, and molds to transform carbohydrates into different substances. Fermentation is important for preserving, enhancing flavor, and improving the nutritional quality of various perishable foods.
View Article and Find Full Text PDFMolecules
December 2024
Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland.
The present study was undertaken to investigate the impact of curdlan and buttermilk addition on the physicochemical and sensory attributes of processed cheeses (PCs), thereby elucidating their potential utility in culinary applications. Comprehensive analyses were conducted to assess the chemical composition, textural and rheological properties, microstructural features, and sensory characteristics of PCs. The findings indicate that the addition of curdlan notably decreased both the hardness and stickiness of cheeses but also significantly reduced their meltability.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Laboratory of Animal Husbandry, Department of Animal Production, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Artificial rearing (AR) of lambs is nowadays a common practice in Mediterranean dairy sheep production systems to enhance the milk available for cheese or yoghurt manufacturing. The sufficient growth of lambs in an AR system is vital for the economic success of dairy sheep farms. However, AR is often associated with negative impacts on the performance and physiology of lambs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!