Regeneration and modification of cellulose acetate from cigarette waste: Biomedical potential by encapsulation of tetracycline hydrochloride.

Int J Biol Macromol

Key Laboratory of Eco-Textiles, Ministry of Education, College of Textile and Clothing, Jiangnan University, Wuxi 214122, China; Jiangxi Centre for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang 330201, China. Electronic address:

Published: October 2023

Cigarette waste are pervasive litter on Earth, posing a major threat to organisms and ecosystems. However, these waste contain cellulose acetate (CA) and can be recycled, transforming into raw materials for new products. Polymers like CA can be used in biomedical applications as drug carriers and scaffolds for drug release. In this study, cigarette filters waste was collected, recycled and used for fabricating the nanofibrous membrane of cellulose acetate nanofibers (CFCA) through electrospinning technique. Tetracycline hydrochloride (TC) was encapsulated in the nanofibers to prevent bacterial infections. Various analyses were conducted: Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction Analysis (XRD) and Thermogravimetric analysis (TGA). CA and CFCA exhibited high water uptake properties and exhibited similar breaking stress and strain values. Both CA and CFCA effectively acted as stable drug carriers, with sustained in vitro drug release. Antibacterial activity was demonstrated by the drug-loaded CA and CFCA nanofibers against, Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Based on their cytotoxicity evaluations on mouse fibroblast cells (L929), CA and CFCA fibrous mats demonstrated no cytotoxicity and similar cell viability results. Consequently, the TC-loaded nanofibers made from CA and CFCA exhibited suitable properties for wound healing applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126266DOI Listing

Publication Analysis

Top Keywords

cellulose acetate
12
cigarette waste
8
tetracycline hydrochloride
8
drug carriers
8
drug release
8
nanofibers cfca
8
cfca exhibited
8
cfca
6
regeneration modification
4
modification cellulose
4

Similar Publications

Cellulose Acetate Butyrate-Based In Situ Gel Comprising Doxycycline Hyclate and Metronidazole.

Polymers (Basel)

December 2024

Program of Pharmaceutical Engineering, Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.

Cellulose acetate butyrate is a biodegradable cellulose ester bioplastic produced from plentiful natural plant-based resources. Solvent-exchange-induced in situ gels are particularly promising for periodontitis therapy, as this dosage form allows for the direct delivery of high concentrations of antimicrobial agents to the localized periodontal pocket. This study developed an in situ gel for periodontitis treatment, incorporating a combination of metronidazole and doxycycline hyclate, with cellulose acetate butyrate serving as the matrix-forming agent.

View Article and Find Full Text PDF

Investigation of Calcium Phosphate-Based Biopolymer Composite Scaffolds for Bone Tissue Engineering.

Int J Mol Sci

December 2024

Institute of Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege str. 29-33, H-1121 Budapest, Hungary.

We present a novel method for preparing bioactive and biomineralized calcium phosphate (mCP)-loaded biopolymer composite scaffolds with a porous structure. Two types of polymers were investigated as matrices: one natural, cellulose acetate (CA), and one synthetic, polycaprolactone (PCL). Biomineralized calcium phosphate particles were synthesized via wet chemical precipitation, followed by the addition of organic biominerals, such as magnesium gluconate and zinc gluconate, to enhance the bioactivity of the pure CP phase.

View Article and Find Full Text PDF

We investigated the amount and distribution of waste generated by commercial tobacco, electronic cigarette, and cannabis (TEC) use to inform policy options aimed at mitigating the environmental harm caused by these products. Using disproportionate stratified random sampling, we selected 60 census blocks from the eight largest cities in San Diego County, California. We twice surveyed publicly accessible areas in these blocks to quantify TEC waste accumulation and its re-accumulation.

View Article and Find Full Text PDF

Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.

View Article and Find Full Text PDF

Eco-Friendly, Sound Absorbing Materials Based on Cellulose Acetate Electrospun Fibers/Luffa Cylindrica Composites.

Macromol Rapid Commun

December 2024

Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1 Panepistimiou Avenue Nicosia, Aglantzia, 2109, Cyprus.

Sound absorption plays a crucial role in addressing noise pollution that may cause harm to both human health and wildlife. To tackle this environmental issue, the implementation of natural-based sound absorbing materials attracts considerable attention in the last few years. In this study, sound absorbing, eco-friendly composites are produced by combining a 3D natural sponge namely Luffa Cylindrica (LC) with cellulose acetate (CA) microfibrous layers that are fabricated through electrospinning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!