Decondensation and the subsequent release of chromatin from specific immune cells in response to inflammatory stimuli is a highly conserved aspect of the innate immune system and leads to the formation of extracellular traps, observable in nearly all forms of multicellular life. This process is known as ETosis, with the release of DNA and its associated antimicrobial proteins physically capturing and neutralizing pathogens following an infection or tissue damage. Despite the universality of this response, data concerning extracellular traps in non-model organisms is limited, with most invertebrate studies doing little more than proving their existence due to difficulties in stimulation and high interindividual variability in trap production. This study provides a novel, simple, and inexpensive method for the consistent stimulation of extracellular traps in eastern oyster (Crassostrea virginica) hemocytes. Using the methods described in this study, we compared how ploidy impacts the rate, size, and efficacy of extracellular traps. Findings demonstrated that hemocyte extracellular traps were potent antimicrobials against both Gram-positive and Gram-negative bacteria. Furthermore, we provide evidence to suggest that agranulocytes may be the primary ETosis effector cells in C. virginica. This study is the first to describe extracellular traps in C. virginica and highlights the possible benefits of using triploid animals to gain a further understanding of ETosis and the factors that regulate its induction and efficacy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2023.108992 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!