Microplastics in the seagrass ecosystems: A critical review.

Sci Total Environ

State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.

Published: December 2023

Marine microplastic (MP) pollution represents a global environmental issue that has ignited considerable apprehension within the international community. Seagrass beds, which serve as nearshore marine ecosystems, have emerged as focal points of plastic and MP contamination due to the pronounced density of anthropogenic activities and the hydrological mitigating effects of submerged vegetation. Nevertheless, our comprehension of MPs within seagrass ecosystems remains constrained. In this study, we employed bibliometric analyses and comprehensive data exploration to summarize the historical progression of the development, pivotal areas of interest, and research deficiencies, followed by proposing future research directions for MP pollution in seagrass beds. The 37 selected papers were sourced from the Web of Science Core Collection scientific database as of December 31st, 2022. Based on the current evaluation, MPs are ubiquitously discovered within seagrass canopies, sediments, and marine organisms, while less than 15 % of seagrass species worldwide have been investigated. Moreover, methodological inconsistencies in sampling, processing and visualization between studies hindered the fusion and comparison of data. MPs in upper sediments and seagrass blades were the most widely investigated, with an average abundance of 263.4 ± 309.2 n/kg and 0.09 ± 0.03 n/blade. In all environmental compartments, the prevalent forms of MPs comprise fibrous and fragmented particles, encompassing the dominant polymers such as polypropylene, polyethylene and polyethylene terephthalate. However, the source of MPs in seagrass beds based on MP characteristics and local hydrodynamics has not been comprehensively analyzed in previous studies. The evidence for MPs acting as pollutants and contaminant carries impacting the growth and decline of seagrass is also weak. Currently, the precise implications of MPs on submerged vegetation, organisms, and the broader seagrass ecosystem remain inconclusive. However, considering the persistent accumulation of MPs, it is imperative to explore the ecological hazards they may pose within the foreseeable future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166152DOI Listing

Publication Analysis

Top Keywords

seagrass beds
12
seagrass
9
seagrass ecosystems
8
submerged vegetation
8
mps
8
mps seagrass
8
microplastics seagrass
4
ecosystems critical
4
critical review
4
review marine
4

Similar Publications

Low-salinity conditions are generally used in land-based cultivation to promote the germination and growth of L. and to improve the restoration effect of seagrass beds. Different salinity conditions lead to morphological and physiological differences.

View Article and Find Full Text PDF

Scientometric approach to the scientific trends in articles on seagrass in the Atlantic Coast published between 1969-2024.

Front Plant Sci

December 2024

Laboratório de Ecologia de Sedimentos, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal Fluminense, Niterói, Brazil.

Submerged or partially floating seagrasses in marine or brackish waters form productive seagrass beds, feeding grounds for a rich and varied associated biota, play key ecological roles in mitigating climate change and provide ecosystem services for humanity. The objective of this study was to perform a temporal quali- and quantitative analysis on the scientific production on seagrasses in the Atlantic Ocean during last 64 years (1960 to 2024) through defined workflow by scientometric analysis on Scopus database. Publications in this database date back to 1969, comprising a total of 3.

View Article and Find Full Text PDF

Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement.

Sci Total Environ

January 2025

Leibniz University Hannover, Ludwig Franzius Institute of Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, Hannover 30167, Germany.

Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely.

View Article and Find Full Text PDF

The importance of organic matter in controlling the metal variability and mobility in seagrass sediments.

Environ Pollut

February 2025

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

Metal contamination in seagrass beds has been extensively studied in the past decades. Most of earlier studies have focused on reporting metal concentration in different compartments of seagrass ecosystem, with little attention given to the role of sediment organic matter in controlling the metal mobility and bioavailability. This study investigated metal contamination in seagrass sediments in Hainan Island, China and illustrated how various geochemical factors impact the spatial variability of the metal concentrations.

View Article and Find Full Text PDF

Enhanced sediment microbial diversity in mangrove forests: Indicators of nutrient status in coastal ecosystems.

Mar Pollut Bull

December 2024

College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang 325035, China. Electronic address:

Coastal ecosystems are increasingly threatened by nutrient imbalances and environmental degradation, which can compromise their stability and productivity. We analyzed the sediment characteristics, microbial community structures, and nutrient cycling across three habitats: mangrove forests, seagrass beds, and bare beaches. The physicochemical properties (including pH, total nitrogen (TN), phosphorus (P), and potassium (K)) of the sediment samples were analyzed, and the microbial diversity was assessed using high-throughput sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!