Ferroelectric materials with crystal symmetry transition from single phase to multiphase coexistence exhibit anomalous photosensitive properties. The optical properties (optical band gap and photosensitive) found on non-centrosymmetric and centrosymmetric systems achieved research interest because of their interesting behavior. In this regard, the lead-free polycrystalline BaSrTiO(BSTO, 0⩽x⩽0.3) has been synthesized to explore its crystal structure, dielectric, light absorption, and photocurrent sensing properties for various applications. Both experimental and theoretical studies on BSTO (0⩽x⩽0.3) ceramics confirm the crystal symmetry transition with the reduction of band gap as compared to pristine BaTiO. This crystal symmetry transition plays an important role in varying the various physical properties as it involves the transition from the polar phase to the non-polar phase. The optical band gap has been estimated experimentally by the Tauc plot method and found that there is a small variation of energy band gap from 3.615 eV to 3.212 eV with Sr substitution. The highest dielectric constant was found to be 5327 at lower frequency on BaSrTiOafter that for further increase in Sr concentration the dielectric constant decreases because of the introduction of the non-polar phase. A strong correlation between crystal structure and physical properties (dielectric, optical, etc.) has been observed. The photocurrent of the samples is significant which reveals that the sample is influenced by the photons. In a nutshell, the present study deepens the understanding of the correlation between crystal structure and various physical properties of BSTO and, hence provides an idea of required design parameters to construct a ferroelectric system for better photosensitive nature suitable for device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/acef9c | DOI Listing |
Sci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University, Abu Dhabi, United Arab Emirates.
The current research aims to determine the impact of orange peel dye (OPD), an eco-friendly addition, on the optical properties of biodegradable polymers. This study investigates the enhancement of optical properties in solid electrolytes based on chitosan (CS) and glycerol, with varying OPD concentrations. UV-Vis-NIR spectroscopy revealed significantly enhanced UV-visible light absorption in the 200-500 nm region and effective UV light blocking.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
Hydroxyapatite (HA) is an important constituent of natural bone. The properties of HA can be enhanced with the help of various ionic substitutions in the crystal lattice of HA. Iron (Fe) is a vital element present in bones and teeth.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea; POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang 37673, Republic of Korea. Electronic address:
Band topology has emerged as a novel tool for material design across various domains, including photonic and phononic systems, and metamaterials. A prominent model for band topology is the Su-Schrieffer-Heeger (SSH) chain, which reveals topological in-gap states within Bragg-type gaps (BG) formed by periodic modification. Apart from classical BGs, another mechanism for bandgap formation in metamaterials involves strong coupling between local resonances and propagating waves, resulting in a local resonance-induced bandgap (LRG).
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, China.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!