Localized estimation of electromagnetic sources underlying event-related fields using recurrent neural networks.

J Neural Eng

School of Psychological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia.

Published: August 2023

. To use a recurrent neural network (RNN) to reconstruct neural activity responsible for generating noninvasively measured electromagnetic signals.. Output weights of an RNN were fixed as the lead field matrix from volumetric source space computed using the boundary element method with co-registered structural magnetic resonance images and magnetoencephalography (MEG). Initially, the network was trained to minimise mean-squared-error loss between its outputs and MEG signals, causing activations in the penultimate layer to converge towards putative neural source activations. Subsequently, L1 regularisation was applied to the final hidden layer, and the model was fine-tuned, causing it to favour more focused activations. Estimated source signals were then obtained from the outputs of the last hidden layer. We developed and validated this approach with simulations before applying it to real MEG data, comparing performance with beamformers, minimum-norm estimate, and mixed-norm estimate source reconstruction methods.. The proposed RNN method had higher output signal-to-noise ratios and comparable correlation and error between estimated and simulated sources. Reconstructed MEG signals were also equal or superior to the other methods regarding their similarity to ground-truth. When applied to MEG data recorded during an auditory roving oddball experiment, source signals estimated with the RNN were generally biophysically plausible and consistent with expectations from the literature.. This work builds on recent developments of RNNs for modelling event-related neural responses by incorporating biophysical constraints from the forward model, thus taking a significant step towards greater biological realism and introducing the possibility of exploring how input manipulations may influence localised neural activity.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/acef94DOI Listing

Publication Analysis

Top Keywords

recurrent neural
8
neural activity
8
meg signals
8
hidden layer
8
source signals
8
meg data
8
neural
6
signals
5
source
5
meg
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!