Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cutaneous melanoma represents one of the most life-threatening malignancies. Histopathological image analysis serves as a vital tool for early melanoma detection. Deep neural network (DNN) models are frequently employed to aid pathologists in enhancing the efficiency and accuracy of diagnoses. However, due to the paucity of well-annotated, high-resolution, whole-slide histopathology image (WSI) datasets, WSIs are typically fragmented into numerous patches during the model training and testing stages. This process disregards the inherent interconnectedness among patches, potentially impeding the models' performance. Additionally, the presence of excess, non-contributing patches extends processing times and introduces substantial computational burdens. To mitigate these issues, we draw inspiration from the clinical decision-making processes of dermatopathologists to propose an innovative, weakly supervised deep reinforcement learning framework, titled Fast medical decision-making in melanoma histopathology images (FastMDP-RL). This framework expedites model inference by reducing the number of irrelevant patches identified within WSIs. FastMDP-RL integrates two DNN-based agents: the search agent (SeAgent) and the decision agent (DeAgent). The SeAgent initiates actions, steered by the image features observed in the current viewing field at various magnifications. Simultaneously, the DeAgent provides labeling probabilities for each patch. We utilize multi-instance learning (MIL) to construct a teacher-guided model (MILTG), serving a dual purpose: rewarding the SeAgent and guiding the DeAgent. Our evaluations were conducted using two melanoma datasets: the publicly accessible TCIA-CM dataset and the proprietary MELSC dataset. Our experimental findings affirm FastMDP-RL's ability to expedite inference and accurately predict WSIs, even in the absence of pixel-level annotations. Moreover, our research investigates the WSI-based interactive environment, encompassing the design of agents, state and reward functions, and feature extractors suitable for melanoma tissue images. This investigation offers valuable insights and references for researchers engaged in related studies. The code is available at: https://github.com/titizheng/FastMDP-RL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compmedimag.2023.102275 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!