We study Fermi-Hubbard models with kinetically constrained dynamics that conserves both total particle number and total center of mass, a situation that arises when interacting fermions are placed in strongly tilted optical lattices. Through a combination of analytics and numerics, we show how the kinetic constraints stabilize an exotic non-Fermi liquid phase described by fermions coupled to a gapless bosonic field, which in several respects mimics a dynamical gauge field. This offers a novel route towards the study of non-Fermi liquid phases in the precision environments afforded by ultracold atom platforms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.043403 | DOI Listing |
J Chem Theory Comput
January 2025
Technische Universitát Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, Berlin D-10623, Germany.
Local hybrid functionals (LHs) use a real-space position-dependent admixture of exact exchange (EXX), governed by a local mixing function (LMF). The systematic construction of LMFs has been hampered over the years by a lack of exact physical constraints on their valence behavior. Here, we exploit a data-driven approach and train a new type of "n-LMF" as a relatively shallow neural network.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
German Institutes of Textile and Fiber Research (DITF), Koerschtalstr. 26, D-73770 Denkendorf, Germany.
Nat Commun
January 2025
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
As a medium to understand the nature of glass transition, ultrastable glasses have garnered increasing attention for their significance in fundamental science and technological applications. Most studies have produced ultrastable glasses through a surface-controlled process using physical vapor deposition. Here, we demonstrate an approach to accessing ultrastable glasses via the glass-to-glass transition, a bulk transformation that is inherently free from size constraints and anisotropy.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
Carbon catalysts have shown promise as an alternative to the currently available energy-intensive approaches for nitrogen fixation (NF) to urea, NH, or related nitrogenous compounds. The primary challenges for NF are the natural inertia of nitrogenous molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based materials have made significant progress due to their tunable electronic structure and ease of defect formation.
View Article and Find Full Text PDFJ Chem Phys
January 2025
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China.
While most thermostats in molecular dynamics are designed for equilibrium systems, their extension to non-equilibrium simulations has little theoretical justification. In the literature, an artifact referred to as "lane formation" was discovered; however, its cause remained unclear and was simply attributed to a constraint on velocity fluctuations or non-ergodicity in thermostats. In addition, global deterministic thermostatted dynamics was found to exhibit unceasing phase-space compression in steady states, incompatible with their expected stationary distributions and Gibbs entropy, which was mistakenly perceived as inescapable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!