Time-Domain Universal Linear-Optical Operations for Universal Quantum Information Processing.

Phys Rev Lett

Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

Published: July 2023

We demonstrate universal and programmable three-mode linear-optical operations in the time domain by realizing a scalable dual-loop optical circuit suitable for universal quantum information processing (QIP). The programmability, validity, and deterministic operation of our circuit are demonstrated by performing nine different three-mode operations on squeezed-state pulses, fully characterizing the outputs with variable measurements, and confirming their entanglement. Our circuit can be scaled up just by making the outer loop longer and also extended to universal quantum computers by incorporating feed forward systems. Thus, our work paves the way to large-scale universal optical QIP.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.040601DOI Listing

Publication Analysis

Top Keywords

universal quantum
12
linear-optical operations
8
quantum processing
8
universal
5
time-domain universal
4
universal linear-optical
4
operations universal
4
processing demonstrate
4
demonstrate universal
4
universal programmable
4

Similar Publications

Recent studies on topological materials are expanding into the nonlinear regime, while the central principle, namely the bulk-edge correspondence, is yet to be elucidated in the strongly nonlinear regime. Here, we reveal that nonlinear topological edge modes can exhibit the transition to spatial chaos by increasing nonlinearity, which can be a universal mechanism of the breakdown of the bulk-edge correspondence. Specifically, we unveil the underlying dynamical system describing the spatial distribution of zero modes and show the emergence of chaos.

View Article and Find Full Text PDF

Hamiltonian learning for 300 trapped ion qubits with long-range couplings.

Sci Adv

January 2025

Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, PR China.

Quantum simulators with hundreds of qubits and engineerable Hamiltonians have the potential to explore quantum many-body models that are intractable for classical computers. However, learning the simulated Hamiltonian, a prerequisite for any quantitative applications of a quantum simulator, remains an outstanding challenge due to the fast increasing time cost with the qubit number and the lack of high-fidelity universal gate operations in the noisy intermediate-scale quantum era. Here, we demonstrate the Hamiltonian learning of a two-dimensional ion trap quantum simulator with 300 qubits.

View Article and Find Full Text PDF

We uncover emergent universality arising in the equilibration dynamics of multimode continuous-variable systems. Specifically, we study the ensemble of pure states supported on a small subsystem of a few modes, generated by Gaussian measurements on the remaining modes of a globally pure bosonic Gaussian state. We find that beginning from highly entangled, complex global states, such as random Gaussian states and product squeezed states coupled via a deep array of linear optical elements, the induced ensemble attains a universal form, independent of the choice of measurement basis: it is composed of unsqueezed coherent states whose displacements are distributed normally and isotropically, with variance depending on only the particle-number density of the system.

View Article and Find Full Text PDF

We experimentally study cosmological particle production in a two-dimensional Bose-Einstein condensate, whose density excitations map to an analog cosmology. The expansion of spacetime is realized with tunable interactions. The particle spectrum can be understood through an analogy to quantum mechanical scattering, in which the dynamics of the spacetime metric determine the shape of the scattering potential.

View Article and Find Full Text PDF

Quantum-State Texture and Gate Identification.

Phys Rev Lett

December 2024

Universidade Federal de Pernambuco, Departamento de Física, Centro de Ciências Exatas e da Natureza, Recife, Pernambuco 50670-901 Brazil.

We introduce and explore the notion of texture of an arbitrary quantum state, in a selected basis. In the first part of this Letter we develop a resource theory and show that state texture is adequately described by an easily computable monotone, which is also directly measurable. It is shown that textures are useful in the characterization of unknown quantum gates in universal circuit layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!