Spectral functions are central to link experimental probes to theoretical models in condensed matter physics. However, performing exact numerical calculations for interacting quantum matter has remained a key challenge especially beyond one spatial dimension. In this work, we develop a versatile approach using neural quantum states to obtain spectral properties based on simulations of the dynamics of excitations initially localized in real or momentum space. We apply this approach to compute the dynamical structure factor in the vicinity of quantum critical points (QCPs) of different two-dimensional quantum Ising models, including one that describes the complex density wave orders of Rydberg atom arrays. When combined with deep network architectures we find that our method reliably describes dynamical structure factors of arrays with up to 24×24 spins, including the diverging timescales at critical points. Our approach is broadly applicable to interacting quantum lattice models in two dimensions and consequently opens up a route to compute spectral properties of correlated quantum matter in yet inaccessible regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.131.046501 | DOI Listing |
Sci Adv
January 2025
Department of Ecology, Evolution and Behavior, University of Minnesota, 1479 Gortner Ave., Saint Paul, MN 55108, USA.
Tracking biodiversity across biomes over space and time has emerged as an imperative in unified global efforts to manage our living planet for a sustainable future for humanity. We harness the National Ecological Observatory Network to develop routines using airborne spectroscopic imagery to predict multiple dimensions of plant biodiversity at continental scale across biomes in the US. Our findings show strong and positive associations between diversity metrics based on spectral species and ground-based plant species richness and other dimensions of plant diversity, whereas metrics based on distance matrices did not.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York, United States.
Purpose: To assess the preferential sites of retinal capillary occlusion at the parafovea in patients with sickle cell disease (SCD) using optical coherence tomography angiography (OCT-A).
Methods: OCT-A scans from 107 patients with SCD and 51 race-matched unaffected controls were obtained using a commercial spectral domain-OCT system. At least eight sequential 3 × 3 mm scans centered at the fovea were acquired and averaged for image analysis.
Small
January 2025
Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
Metal halide perovskite nanoplatelets (NPls) possess ultra-narrow photoluminescence (PL) bands tunable over the entire visible spectral range, which makes them promising for utilization in light-emitting diodes (LEDs) with spectrally pure emission colors. This calls for development of synthetic methods toward perovskite NPls with a high degree of control over both their thickness and lateral dimensions. A general strategy is developed to obtain such monodisperse CsPbI NPls through the control over the halide-to-lead ratio during heating-up reaction.
View Article and Find Full Text PDFCell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFNew Phytol
January 2025
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91011, USA.
A new proliferation of optical instruments that can be attached to towers over or within ecosystems, or 'proximal' remote sensing, enables a comprehensive characterization of terrestrial ecosystem structure, function, and fluxes of energy, water, and carbon. Proximal remote sensing can bridge the gap between individual plants, site-level eddy-covariance fluxes, and airborne and spaceborne remote sensing by providing continuous data at a high-spatiotemporal resolution. Here, we review recent advances in proximal remote sensing for improving our mechanistic understanding of plant and ecosystem processes, model development, and validation of current and upcoming satellite missions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!