Evolution has shaped the development of proteins with an incredible diversity of properties. Incorporating proteins into materials is desirable for applications including biosensing; however, high-throughput selection techniques for screening protein libraries in materials contexts is lacking. In this work, a high-throughput platform to assess the binding affinity for ordered sensing proteins was established. A library of fusion proteins, consisting of an elastin-like polypeptide block, one of 22 variants of rcSso7d, and a coiled-coil order-directing sequence, was generated. All selected variants had high binding in films, likely due to the similarity of the assay to magnetic bead sorting used for initial selection, while solution binding was more variable. From these results, both the assembly of the fusion proteins in their operating state and the functionality of the binding protein are key factors in the biosensing performance. Thus, the integration of directed evolution with assembled systems is necessary to the design of better materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c01229DOI Listing

Publication Analysis

Top Keywords

directed evolution
8
fusion proteins
8
proteins
6
high-throughput screening
4
screening streptavidin-binding
4
streptavidin-binding proteins
4
proteins self-assembled
4
self-assembled solid
4
solid films
4
films directed
4

Similar Publications

Electrochemical Ammonia Synthesis at -Block Active Sites Using Various Nitrogen Sources: Theoretical Insights.

J Phys Chem Lett

January 2025

School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

Electrochemical nitrogen conversion for ammonia (NH) synthesis, driven by renewable electricity, offers a sustainable alternative to the traditional Haber-Bosch process. However, this conversion process remains limited by a low Faradaic efficiency (FE) and NH yield. Although transition metals have been widely studied as catalysts for NH synthesis through effective electron donation/back-donation mechanisms, there are challenges in electrochemical environments, including competitive hydrogen evolution reaction (HER) and catalyst stability issues.

View Article and Find Full Text PDF

Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a promising approach to identify new antimicrobial compounds in diverse microbial species. Here we developed an AI-based, explainable deep learning model, EvoGradient, that predicts the potency of antimicrobial peptides (AMPs) and virtually modifies peptide sequences to produce more potent AMPs, akin to in silico directed evolution. We applied this model to peptides encoded in low-abundance human oral bacteria, resulting in the virtual evolution of 32 peptides into potent AMPs.

View Article and Find Full Text PDF

In recent years, the emergence of artificial intelligence painting tools has significantly changed the creative activities and future development of designers, but studies specifically addressing designers' inclinations to transition to AI painting tools are scarce. Therefore, to understand designers' switching intentions toward AI painting tools, this study proposed a research model based on the push-pull-mooring framework. Data were collected from 320 Chinese designers and analyzed using structural equation modeling.

View Article and Find Full Text PDF

The unpredictability of the epidemics caused by new, unknown viruses, combined with differing responsibilities among government departments, often leads to a prisoner's dilemma in epidemic information governance. In this context, the whistle-blower effect in the health departments leads to delayed reporting to avoid potential retaliation, and the cry-wolf effect in the administrative departments results in sustained observation to avoid ineffective warnings. To address these challenges, we employ game theory to analyze the dynamics of epidemic information governance and focus on two external governance mechanisms-superior accountability and media supervision-that can help resolve the prisoner's dilemma during and after an outbreak.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!