Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Vascularization is a key issue for the clinical translation of tissue engineering strategies. This has been recognized in the field for almost two decades. Several strategies to solve this issue are proposed but none has decisively tackled the problem. This is in part due to an excessive focus on microvascularization that ignores the need of having macrovessels capable of being surgically connected to the patient's circulation upon implantation. Indeed, a strategy for macrovessel engineering must co-exist with a strategy for microvessels. And if this is true, all the intermediate scales have to be addressed as well. Therefore, multiscale vascular networks must be the focus of tissue engineering vascularization efforts. In this work, a reflection is made on a possible path forward for researchers and engineers in the field to achieve the ultimate goal of efficient vascularization of engineered tissues and organs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.202300291 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!