Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autophagy plays a dual role in tumorigenesis by functioning as both a tumor suppressor and promoter, depending on the stage of tumorigenesis. However, it is still unclear at what stage the role of autophagy changes during tumorigenesis. Herein, we investigated the differences in the basal levels and roles of autophagy in five cell lines at different stages of cell transformation. We found that cell lines at higher transformation stages were more sensitive to the autophagy inhibitors, suggesting that autophagy plays a more important role as the transformation progresses. Our ptfLC3 imaging analysis to measure Atg5/LC3-dependent autophagy showed increased autophagic flux in transformed cells compared to untransformed cells. However, the Cyto-ID analysis, which measures Atg5-dependent and -independent autophagic flux, showed high levels of autophagosome formation not only in the transformed cells but also in the initiated cell and Atg5 KO cell line. These results indicate that Atg5-independent autophagy may be more critical in initiated and transformed cell lines than in untransformed cells. Specially, we observed that transformed cells maintained relatively high basal autophagy levels under rapidly proliferating conditions but exhibited much lower basal autophagy levels at high confluency; however, autophagic flux was not significantly reduced in untransformed cells, even at high confluency. In addition, when continuously cultured for 3 weeks without passage, senescent cells were significantly less sensitive to autophagy inhibition than their actively proliferating counterparts. These results imply that once a cell has switched from a proliferative state to a senescent state, the inhibition of autophagy has only a minimal effect. Taken together, our results suggest that autophagy can be differentially regulated in cells at different stages of tumorigenesis under stressful conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.31098 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!