Skeletal muscle is composed of multinucleated myotubes formed by the fusion of mononucleated myoblasts. Skeletal muscle differentiation, termed as myogenesis, have been investigated using the mouse skeletal myoblast cell line C2C12. It has been reported that several "small" Rab proteins, major membrane-trafficking regulators, possibly regulate membrane protein transport in C2C12 cells; however, the role of Rab proteins in myogenesis remains unexplored. Rab44, a member of "large" Rab GTPases, has recently been identified as a negative regulator of osteoclast differentiation. In this study, using C2C12 cells, we found that Rab44 expression was upregulated during myoblast differentiation into myotubes. Knockdown of Rab44 enhanced myoblast differentiation and myotube formation. Consistent with these results, Rab44 knockdown in myoblasts increased expression levels of several myogenic marker genes. Rab44 knockdown increased the surface accumulation of myomaker and myomixer, two fusogenic proteins required for multinucleation, implying enhanced cell fusion. Conversely, Rab44 overexpression inhibited myoblast differentiation and tube formation, accompanied by decreased expression of some myogenic markers. Furthermore, Rab44 was found to be predominantly localized in lysosomes, and Rab44 overexpression altered the number and size of lysosomes. Considering the underlying molecular mechanism, Rab44 overexpression impaired the signaling pathway of the mechanistic target of rapamycin complex1 (mTORC1) in C2C12 cells. Namely, phosphorylation levels of mTORC1 and downstream mTORC1 substrates, such as S6 and P70-S6K, were notably lower in Rab44 overexpressing cells than those in control cells. These results indicate that Rab44 negatively regulates myoblast differentiation into myotubes by controlling fusogenic protein transport and mTORC1 signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.30457 | DOI Listing |
Burns Trauma
January 2025
Department of Arthroscopic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Xuhui District, Shanghai 200233, China.
Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.
View Article and Find Full Text PDFGene
January 2025
Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang 330032 China. Electronic address:
The growth and development of chicken skeletal muscle directly affects chicken meat production, which is very important for broiler industry. Matrix metallopeptidase 2 (MMP2) exists in skeletal muscle. However, the underlying regulating of MMP2 remain unknown.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Center for Non-Infectious Diseases and Environmental Health Sciences, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
Recently, toxicological and epidemiological research has provided strong support for the unfavorable effects of bisphenol-A (BPA, 2,2'-bis(4-hydroxyphenyl) propane) on myogenesis and its underlying mechanisms. Researchers have therefore been looking for new strategies to prevent or mitigate these injurious effects of BPA on the human body. It has been found that plant extracts may act as potential therapeutic agents or functional foods, preventing human diseases caused by BPA.
View Article and Find Full Text PDFBiology (Basel)
January 2025
NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
Puerarin, a flavonoid compound present in the roots of radix , contributes to the development of tissues such as bone and nerve, but its role in skeletal muscle regeneration remains unclear. In this study, we employed C2C12 myoblasts and barium chloride (BaCl)-based muscle injury models to investigate the effects of puerarin on myogenesis. Our study showed that puerarin stimulated the migration and differentiation of myoblasts in vitro.
View Article and Find Full Text PDFCells
January 2025
Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea.
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!