A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Matriptase-dependent epidermal pre-neoplasm in zebrafish embryos caused by a combination of hypotonic stress and epithelial polarity defects. | LitMetric

AI Article Synopsis

  • Aberrant activity of Matriptase-1, a protease linked to various cancers, is often due to an imbalance with its inhibitor Hai1, leading to tumor development.
  • Loss of the Hai1 inhibitor in zebrafish leads to early pre-neoplasms, illustrating the importance of Matriptase regulation during embryonic development.
  • Epithelial polarity defects and systemic hypotonic stress were found to synergistically increase Matriptase activity, suggesting these factors could play a critical role in carcinogenesis and highlight the complexity of cancer development pathways.

Article Abstract

Aberrantly up-regulated activity of the type II transmembrane protease Matriptase-1 has been associated with the development and progression of a range of epithelial-derived carcinomas, and a variety of signaling pathways can mediate Matriptase-dependent tumorigenic events. During mammalian carcinogenesis, gain of Matriptase activity often results from imbalanced ratios between Matriptase and its cognate transmembrane inhibitor Hai1. Similarly, in zebrafish, unrestrained Matriptase activity due to loss of hai1a results in epidermal pre-neoplasms already during embryogenesis. Here, based on our former findings of a similar tumor-suppressive role for the Na+/K+-pump beta subunit ATP1b1a, we identify epithelial polarity defects and systemic hypotonic stress as another mode of aberrant Matriptase activation in the embryonic zebrafish epidermis in vivo. In this case, however, a different oncogenic pathway is activated which contains PI3K, AKT and NFkB, rather than EGFR and PLD (as in hai1a mutants). Strikingly, epidermal pre-neoplasm is only induced when epithelial polarity defects in keratinocytes (leading to disturbed Matriptase subcellular localization) occur in combination with systemic hypotonic stress (leading to increased proteolytic activity of Matriptase). A similar combinatorial effect of hypotonicity and loss of epithelial polarity was also obtained for the activity levels of Matriptase-1 in human MCF-10A epithelial breast cells. Together, this is in line with the multi-factor concept of carcinogenesis, with the notion that such factors can even branch off from one and the same initiator (here ATP1a1b) and can converge again at the level of one and the same mediator (here Matriptase). In sum, our data point to tonicity and epithelial cell polarity as evolutionarily conserved regulators of Matriptase activity that upon de-regulation can constitute an alternative mode of Matriptase-dependent carcinogenesis in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446194PMC
http://dx.doi.org/10.1371/journal.pgen.1010873DOI Listing

Publication Analysis

Top Keywords

epithelial polarity
16
hypotonic stress
12
polarity defects
12
matriptase activity
12
epidermal pre-neoplasm
8
matriptase
8
systemic hypotonic
8
epithelial
6
activity
6
polarity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!